Effect of Thermal Barrier Coating on the Thermal Stress of Gas Microturbine Blades and Nozzles

Oscar Tenango-Pirin, Elva Reynoso-Jardón, J. C. García, Y. Mariaca, Yuri Sara Hernández, R. Ñeco, Omar Dávalos
{"title":"Effect of Thermal Barrier Coating on the Thermal Stress of Gas Microturbine Blades and Nozzles","authors":"Oscar Tenango-Pirin, Elva Reynoso-Jardón, J. C. García, Y. Mariaca, Yuri Sara Hernández, R. Ñeco, Omar Dávalos","doi":"10.5545/sv-jme.2020.6883","DOIUrl":null,"url":null,"abstract":"Thermal barrier coatings play a key role in the operational life of microturbines because they reduce thermal stress in the turbine components. In this work, numerical computations were carried out to assess new materials developed to be used as a thermal barrier coating for gas turbine blades. The performance of the microturbine components protection is also evaluated. The new materials were 8YSZ, Mg2SiO4, Y3Ce7Ta2O23.5, and Yb3Ce7Ta2O23.5. For testing the materials, a 3D gas microturbine model is developed, in which the fluid-structure interaction is solved using CFD and FEM. Temperature fields and stress magnitudes are calculated on the nozzle and blade, and then these are compared with a case in which no thermal barrier is used. Based on these results, the non-uniform temperature distributions are used to compute the stress levels in nozzles and blades. Higher temperature gradients are observed on the nozzle; the maximum temperature magnitudes are observed in the blades. However, it is found that Mg2SiO4 and Y3Ce7Ta2O23.5 provided better thermal insulation for the turbine components compared with the other evaluated materials. Mg2SiO4 and Y3Ce7Ta2O23.5 presented the best performance regarding stress and thermal insulation for the microturbine components.\nKeywords: thermal barrier coating, gas microturbine, turbine blade, thermal stress","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2020.6883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thermal barrier coatings play a key role in the operational life of microturbines because they reduce thermal stress in the turbine components. In this work, numerical computations were carried out to assess new materials developed to be used as a thermal barrier coating for gas turbine blades. The performance of the microturbine components protection is also evaluated. The new materials were 8YSZ, Mg2SiO4, Y3Ce7Ta2O23.5, and Yb3Ce7Ta2O23.5. For testing the materials, a 3D gas microturbine model is developed, in which the fluid-structure interaction is solved using CFD and FEM. Temperature fields and stress magnitudes are calculated on the nozzle and blade, and then these are compared with a case in which no thermal barrier is used. Based on these results, the non-uniform temperature distributions are used to compute the stress levels in nozzles and blades. Higher temperature gradients are observed on the nozzle; the maximum temperature magnitudes are observed in the blades. However, it is found that Mg2SiO4 and Y3Ce7Ta2O23.5 provided better thermal insulation for the turbine components compared with the other evaluated materials. Mg2SiO4 and Y3Ce7Ta2O23.5 presented the best performance regarding stress and thermal insulation for the microturbine components. Keywords: thermal barrier coating, gas microturbine, turbine blade, thermal stress
热障涂层对燃气微涡轮叶片和喷嘴热应力的影响
热障涂层在微型涡轮机的运行寿命中起着关键作用,因为它们可以减少涡轮机部件的热应力。在这项工作中,进行了数值计算,以评估开发的用作燃气轮机叶片热障涂层的新材料。对微涡轮部件的保护性能进行了评价。新材料为8YSZ、Mg2SiO4、Y3Ce7Ta2O23.5和Yb3Ce7Ta2O23.5。为了对材料进行测试,建立了三维燃气微透平模型,采用CFD和FEM方法求解了模型的流固耦合问题。计算了喷嘴和叶片的温度场和应力值,并与不使用热障的情况进行了比较。在此基础上,利用非均匀温度分布计算了喷嘴和叶片的应力水平。在喷嘴上观察到较高的温度梯度;在叶片中观察到最高温度。然而,与其他评估材料相比,Mg2SiO4和Y3Ce7Ta2O23.5对涡轮部件的隔热效果更好。Mg2SiO4和Y3Ce7Ta2O23.5在微涡轮部件的应力和隔热性能上表现最好。关键词:热障涂层,微型燃气轮机,涡轮叶片,热应力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信