Efficient secure computation optimization

Raphael Urmoneit, F. Kerschbaum
{"title":"Efficient secure computation optimization","authors":"Raphael Urmoneit, F. Kerschbaum","doi":"10.1145/2517872.2517873","DOIUrl":null,"url":null,"abstract":"Secure computation has high computational resource requirements during run-time. Secure computation optimization can lower these requirements, but has high computational resource requirements during compile-time. This prevents automatic optimization of most larger secure computations. In this paper we present an efficient optimization algorithm that does no longer require the use of a theorem prover. For a secure computation with m statements of which n are branching statements we lower the complexity from O(2^(2^n) m) to O(m^5 2^n). Using an implementation of our algorithm we can extend automatic optimization to further examples such as the AES key schedule.","PeriodicalId":102689,"journal":{"name":"PETShop '13","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PETShop '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2517872.2517873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Secure computation has high computational resource requirements during run-time. Secure computation optimization can lower these requirements, but has high computational resource requirements during compile-time. This prevents automatic optimization of most larger secure computations. In this paper we present an efficient optimization algorithm that does no longer require the use of a theorem prover. For a secure computation with m statements of which n are branching statements we lower the complexity from O(2^(2^n) m) to O(m^5 2^n). Using an implementation of our algorithm we can extend automatic optimization to further examples such as the AES key schedule.
高效安全计算优化
安全计算在运行时对计算资源的要求很高。安全计算优化可以降低这些要求,但在编译时对计算资源的要求很高。这阻止了大多数大型安全计算的自动优化。在本文中,我们提出了一种不再需要定理证明者的高效优化算法。对于一个包含m条语句(其中n条是分支语句)的安全计算,我们将复杂度从O(2^(2^n) m)降低到O(m^5 ^ 2^n)。使用我们算法的实现,我们可以将自动优化扩展到更多的例子,如AES密钥调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信