Lattices with skew-Hermitian forms over division algebras and unlikely intersections

Christopher Daw, M. Orr
{"title":"Lattices with skew-Hermitian forms over division algebras and unlikely intersections","authors":"Christopher Daw, M. Orr","doi":"10.5802/jep.240","DOIUrl":null,"url":null,"abstract":"This paper has two objectives. First, we study lattices with skew-Hermitian forms over division algebras with positive involutions. For division algebras of Albert types I and II, we show that such a lattice contains an\"orthogonal\"basis for a sublattice of effectively bounded index. Second, we apply this result to obtain new results in the field of unlikely intersections. More specifically, we prove the Zilber-Pink conjecture for the intersection of curves with special subvarieties of simple PEL type I and II under a large Galois orbits conjecture. We also prove this Galois orbits conjecture for certain cases of type II.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper has two objectives. First, we study lattices with skew-Hermitian forms over division algebras with positive involutions. For division algebras of Albert types I and II, we show that such a lattice contains an"orthogonal"basis for a sublattice of effectively bounded index. Second, we apply this result to obtain new results in the field of unlikely intersections. More specifically, we prove the Zilber-Pink conjecture for the intersection of curves with special subvarieties of simple PEL type I and II under a large Galois orbits conjecture. We also prove this Galois orbits conjecture for certain cases of type II.
在除法代数和不可能相交上具有斜厄米形式的格
本文有两个目的。首先,我们研究了具有正对合的除法代数上的斜厄米格。对于Albert型I和II的除法代数,我们证明了这样的格包含有效有界指数子格的“正交”基。其次,我们将这一结果应用到不可能相交领域得到新的结果。更具体地说,我们在大伽罗瓦轨道猜想下,证明了具有简单PEL型I和II型特殊子变种的曲线相交的Zilber-Pink猜想。我们也证明了这种伽罗瓦轨道猜想在某些情况下的II型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信