dJay: enabling high-density multi-tenancy for cloud gaming servers with dynamic cost-benefit GPU load balancing

Sergey Grizan, David Chu, A. Wolman, Roger Wattenhofer
{"title":"dJay: enabling high-density multi-tenancy for cloud gaming servers with dynamic cost-benefit GPU load balancing","authors":"Sergey Grizan, David Chu, A. Wolman, Roger Wattenhofer","doi":"10.1145/2806777.2806942","DOIUrl":null,"url":null,"abstract":"In cloud gaming, servers perform remote rendering on behalf of thin clients. Such a server must deliver sufficient frame rate (at least 30fps) to each of its clients. At the same time, each client desires an immersive experience, and therefore the server should also provide the best graphics quality possible to each client. Statically provisioning time slices of the server GPU for each client suffers from severe underutilization because clients can come and go, and scenes that the clients need rendered can vary greatly in terms of GPU resource usage over time. In this work, we present dJay, a utility-maximizing cloud gaming server that dynamically tunes client GPU rendering workloads in order to 1) ensure all clients get satisfactory frame rate, and 2) provide the best possible graphics quality across clients. To accomplish this, we develop three main components. First, we build an online profiler that collects key cost and benefit data, and distills the data into a reusable regression model. Second, we build an online utility optimizer that uses the regression model to tune GPU workloads for better graphics quality. The optimizer solves the Multiple Choice Knapsack problem. We demonstrate dJay on two high quality commercial games, Doom 3 and Fable 3. Our results show that when compared to a static configuration, we can respond much better to peaks and troughs, achieving up to four times the multi-tenant density on a single server while offering clients the best possible graphics quality.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In cloud gaming, servers perform remote rendering on behalf of thin clients. Such a server must deliver sufficient frame rate (at least 30fps) to each of its clients. At the same time, each client desires an immersive experience, and therefore the server should also provide the best graphics quality possible to each client. Statically provisioning time slices of the server GPU for each client suffers from severe underutilization because clients can come and go, and scenes that the clients need rendered can vary greatly in terms of GPU resource usage over time. In this work, we present dJay, a utility-maximizing cloud gaming server that dynamically tunes client GPU rendering workloads in order to 1) ensure all clients get satisfactory frame rate, and 2) provide the best possible graphics quality across clients. To accomplish this, we develop three main components. First, we build an online profiler that collects key cost and benefit data, and distills the data into a reusable regression model. Second, we build an online utility optimizer that uses the regression model to tune GPU workloads for better graphics quality. The optimizer solves the Multiple Choice Knapsack problem. We demonstrate dJay on two high quality commercial games, Doom 3 and Fable 3. Our results show that when compared to a static configuration, we can respond much better to peaks and troughs, achieving up to four times the multi-tenant density on a single server while offering clients the best possible graphics quality.
dJay:为云游戏服务器提供高密度多租户,具有动态成本效益的GPU负载平衡
在云游戏中,服务器代表瘦客户机执行远程呈现。这样的服务器必须向每个客户端提供足够的帧速率(至少30fps)。同时,每个客户端都希望获得身临其境的体验,因此服务器也应该为每个客户端提供最好的图形质量。静态地为每个客户端配置服务器GPU的时间片会遭受严重的利用率不足,因为客户端可以来来去去,并且客户端需要渲染的场景在GPU资源使用方面会随着时间的推移而变化很大。在这项工作中,我们提出了dJay,一个实用最大化的云游戏服务器,它可以动态调整客户端GPU渲染工作负载,以便1)确保所有客户端获得满意的帧速率,2)在客户端之间提供最佳的图形质量。为了实现这一点,我们开发了三个主要组件。首先,我们构建一个在线分析器,它收集关键的成本和收益数据,并将数据提取到一个可重用的回归模型中。其次,我们构建了一个在线实用程序优化器,它使用回归模型来调整GPU工作负载以获得更好的图形质量。优化器解决了多项选择背包问题。我们在两款高质量的商业游戏《毁灭战士3》和《神鬼寓言3》中展示了dJay。我们的结果表明,与静态配置相比,我们可以更好地响应高峰和低谷,在单个服务器上实现多达四倍的多租户密度,同时为客户机提供最佳的图形质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信