{"title":"Learning a Joint Low-Rank and Gaussian Model in Matrix Completion with Spectral Regularization and Expectation Maximization Algorithm","authors":"Gang Wu, Ratnesh Kumar","doi":"10.1109/BigDataCongress.2018.00035","DOIUrl":null,"url":null,"abstract":"Completing a partially-known matrix, is an important problem in the field of data science and useful for many related applications, e.g., collaborative filtering for recommendation systems, global positioning in large-scale sensor networks. Low-rank and Gaussian models are two popular classes of models used in matrix completion, both of which have proven success. In this paper, we introduce a single model that leverage the features of both low-rank and Gaussian models. We develop a novel method based on Expectation Maximization (EM) that involves spectral regularization (for low-rank part) as well as maximum likelihood maximization (for learning Gaussian parameters). We also test our framework on real-world movie rating data, and provide comparison results with some of the common methods used for matrix completion.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Completing a partially-known matrix, is an important problem in the field of data science and useful for many related applications, e.g., collaborative filtering for recommendation systems, global positioning in large-scale sensor networks. Low-rank and Gaussian models are two popular classes of models used in matrix completion, both of which have proven success. In this paper, we introduce a single model that leverage the features of both low-rank and Gaussian models. We develop a novel method based on Expectation Maximization (EM) that involves spectral regularization (for low-rank part) as well as maximum likelihood maximization (for learning Gaussian parameters). We also test our framework on real-world movie rating data, and provide comparison results with some of the common methods used for matrix completion.