A Hierarchical Jacobi Iteration for Structured Matrices on GPUs using Shared Memory

M. S. Islam, Qiqi Wang
{"title":"A Hierarchical Jacobi Iteration for Structured Matrices on GPUs using Shared Memory","authors":"M. S. Islam, Qiqi Wang","doi":"10.1109/HPEC55821.2022.9926410","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to accelerate the Jacobi iteration for solving linear systems of equations arising from structured problems on graphics processing units (GPUs). Acceleration is achieved by utilization of on-chip GPU shared memory via a domain decomposition procedure. In particular, the problem domain is partitioned into subdomains whose data is copied to the shared memory of each GPU block. Jacobi iterations are performed internally within each block's shared memory while avoiding expensive global memory accesses every iteration, resulting in a hierarchical algorithm (which takes advantage of the GPU memory hierarchy). We investigate the algorithm performance on the linear systems arising from the discretization of Poisson's equation in 1D and 2D, and observe an 8x speedup in convergence in the 1D problem and a nearly 6x speedup in 2D compared to a conventional GPU implementation of Jacobi iteration which only relies on global memory.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an algorithm to accelerate the Jacobi iteration for solving linear systems of equations arising from structured problems on graphics processing units (GPUs). Acceleration is achieved by utilization of on-chip GPU shared memory via a domain decomposition procedure. In particular, the problem domain is partitioned into subdomains whose data is copied to the shared memory of each GPU block. Jacobi iterations are performed internally within each block's shared memory while avoiding expensive global memory accesses every iteration, resulting in a hierarchical algorithm (which takes advantage of the GPU memory hierarchy). We investigate the algorithm performance on the linear systems arising from the discretization of Poisson's equation in 1D and 2D, and observe an 8x speedup in convergence in the 1D problem and a nearly 6x speedup in 2D compared to a conventional GPU implementation of Jacobi iteration which only relies on global memory.
基于共享内存的gpu上结构化矩阵的层次Jacobi迭代
本文提出了一种在图形处理单元(gpu)上加速求解由结构化问题引起的线性方程组的雅可比迭代算法。加速是通过利用片上GPU共享内存通过域分解过程实现的。特别是,问题域被划分为子域,这些子域的数据被复制到每个GPU块的共享内存中。Jacobi迭代在每个块的共享内存内部执行,同时避免每次迭代都访问昂贵的全局内存,从而产生分层算法(利用GPU内存层次结构)。我们研究了一维和二维泊松方程离散化引起的线性系统上的算法性能,并观察到与仅依赖全局内存的传统GPU实现的雅可比迭代相比,一维问题的收敛速度提高了8倍,二维问题的收敛速度提高了近6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信