Selecting Efficient Cluster Resources for Data Analytics: When and How to Allocate for In-Memory Processing?

Jonathan Will, L. Thamsen, Dominik Scheinert, O. Kao
{"title":"Selecting Efficient Cluster Resources for Data Analytics: When and How to Allocate for In-Memory Processing?","authors":"Jonathan Will, L. Thamsen, Dominik Scheinert, O. Kao","doi":"10.1145/3603719.3603733","DOIUrl":null,"url":null,"abstract":"Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.
为数据分析选择有效的集群资源:何时以及如何分配内存中的处理?
分布式数据流系统(如Apache Spark或Apache Flink)支持在大型商用硬件集群上并行处理内存中的数据。因此,分配给集群的适当内存量是一个至关重要的考虑因素。在本文中,我们分析了分布式数据处理中有效的资源分配所面临的挑战,重点是内存。我们强调使用内存数据处理框架的内存处理会破坏资源效率。根据跟踪数据分析的结果,我们为高效集群资源分配的自动化解决方案编译需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信