Skin Segmentation Based on Human Face Illumination Feature

Pan Ng, Chi-Man Pun
{"title":"Skin Segmentation Based on Human Face Illumination Feature","authors":"Pan Ng, Chi-Man Pun","doi":"10.1109/WI-IAT.2012.71","DOIUrl":null,"url":null,"abstract":"A novel skin segmentation scheme based on human face illumination feature is proposed in this paper. First, we perform a face detection in order to measure the face position and amount on image, and then analyze each face's illumination feature. According these parameters, we classify the skin pixel and generate skin probability map, and finally fetch out a prefect skin mask for skin segmentation. Experimental results based on common dataset show that the proposed method can achieve 92.83% true positive rate (TPR) with 15.82% false positive rate (FPR), outperforming the traditional GMM skin segmentation method.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A novel skin segmentation scheme based on human face illumination feature is proposed in this paper. First, we perform a face detection in order to measure the face position and amount on image, and then analyze each face's illumination feature. According these parameters, we classify the skin pixel and generate skin probability map, and finally fetch out a prefect skin mask for skin segmentation. Experimental results based on common dataset show that the proposed method can achieve 92.83% true positive rate (TPR) with 15.82% false positive rate (FPR), outperforming the traditional GMM skin segmentation method.
基于人脸光照特征的皮肤分割
提出了一种基于人脸光照特征的皮肤分割方法。首先进行人脸检测,测量人脸在图像上的位置和数量,然后分析每个人脸的光照特征。根据这些参数对皮肤像素进行分类,生成皮肤概率图,最后提取出完美的皮肤蒙版进行皮肤分割。基于通用数据集的实验结果表明,该方法的真阳性率(TPR)为92.83%,假阳性率(FPR)为15.82%,优于传统GMM皮肤分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信