Dimensions of limit sets of Kleinian groups

K. Falk
{"title":"Dimensions of limit sets of Kleinian\n groups","authors":"K. Falk","doi":"10.1090/conm/731/14674","DOIUrl":null,"url":null,"abstract":"In this paper we give a brief survey of results on dimension gaps for limit sets of geometrically infinite Kleinian groups. We concentrate on an important notion from geometric group theory, amenability, as a criterion for the existence of such gaps. 1. Dimensions and invariants in conformal dynamics One goal often encountered in mathematics is to prove equality of independently defined invariants for large classes of a certain mathematical object. An instance of this in conformal dynamics has been the attempt to show that the critical exponent of the Poincaré series associated to a conformal dynamical system , e.g. a Kleinian group or a rational map on the Riemann sphere, coincides with the Hausdorff dimension of the corresponding limit set or Julia set, respectively. Since here we will be dealing mainly with Kleinian groups, i.e. discrete, torsion-free subgroups of the group of orientation preserving isometries of (n+ 1)-dimensional hyperbolic space H, n ∈ N, let us first explain briefly what these invariants are. The limit set L(G) of a Kleinian group G is the set of accumulation points of some and thus any orbit Gx of G, x ∈ H, and is a subset of the boundary ∂H of H due to the discreteness of G. The Poincaré series of G is defined as a Dirichlet series","PeriodicalId":431279,"journal":{"name":"Horizons of Fractal Geometry and Complex\n Dimensions","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horizons of Fractal Geometry and Complex\n Dimensions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/731/14674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we give a brief survey of results on dimension gaps for limit sets of geometrically infinite Kleinian groups. We concentrate on an important notion from geometric group theory, amenability, as a criterion for the existence of such gaps. 1. Dimensions and invariants in conformal dynamics One goal often encountered in mathematics is to prove equality of independently defined invariants for large classes of a certain mathematical object. An instance of this in conformal dynamics has been the attempt to show that the critical exponent of the Poincaré series associated to a conformal dynamical system , e.g. a Kleinian group or a rational map on the Riemann sphere, coincides with the Hausdorff dimension of the corresponding limit set or Julia set, respectively. Since here we will be dealing mainly with Kleinian groups, i.e. discrete, torsion-free subgroups of the group of orientation preserving isometries of (n+ 1)-dimensional hyperbolic space H, n ∈ N, let us first explain briefly what these invariants are. The limit set L(G) of a Kleinian group G is the set of accumulation points of some and thus any orbit Gx of G, x ∈ H, and is a subset of the boundary ∂H of H due to the discreteness of G. The Poincaré series of G is defined as a Dirichlet series
Kleinian群极限集的维数
本文简要综述了几何无限Kleinian群极限集的维隙问题。我们集中讨论了几何群论中的一个重要概念,可适性,作为这种间隙存在的一个标准。1. 保形动力学中的维数和不变量数学中经常遇到的一个目标是证明某一数学对象的大类独立定义不变量的相等性。这在共形动力学中的一个例子是,试图证明与共形动力系统相关的poincar级数的临界指数,例如Kleinian群或Riemann球上的有理映射,分别与相应的极限集或Julia集的Hausdorff维相一致。由于这里我们将主要处理克莱因群,即(n+ 1)维双曲空间H, n∈n中保持方向等距的群的离散的,无扭转的子群,让我们首先简要地解释一下这些不变量是什么。Kleinian群G的极限集L(G)是G, x∈H的某或任意轨道Gx的累加点的集合,由于G的离散性,它是边界∂H (H)的一个子集。G的poincar级数定义为Dirichlet级数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信