Design & evaluation of a sensor minimal gait phase and situation detection Algorithm of Human Walking

J. Schuy, T. Mielke, M. Steinhausen, P. Beckerle, S. Rinderknecht
{"title":"Design & evaluation of a sensor minimal gait phase and situation detection Algorithm of Human Walking","authors":"J. Schuy, T. Mielke, M. Steinhausen, P. Beckerle, S. Rinderknecht","doi":"10.1109/HUMANOIDS.2015.7363517","DOIUrl":null,"url":null,"abstract":"This paper presents the design and evaluation of gait detection algorithm based on one IMU placed on the shank. The algorithm is based on adaptive thresholds by artificial neural network and fuzzy logic to identify gait phase and situation for real-time applications like micro-processed prosthesis. Offline evaluation with fifteen able-bodied subjects and two transtibial amputees shows high detection rates of 98 % for distinguishing stance from swing phase as well as 93.6 % between straight and turning gait situation with global parameters.","PeriodicalId":417686,"journal":{"name":"2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2015.7363517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the design and evaluation of gait detection algorithm based on one IMU placed on the shank. The algorithm is based on adaptive thresholds by artificial neural network and fuzzy logic to identify gait phase and situation for real-time applications like micro-processed prosthesis. Offline evaluation with fifteen able-bodied subjects and two transtibial amputees shows high detection rates of 98 % for distinguishing stance from swing phase as well as 93.6 % between straight and turning gait situation with global parameters.
人类步行传感器最小步态相位与态势检测算法的设计与评价
提出了一种基于单下肢IMU的步态检测算法的设计与评价。该算法基于人工神经网络和模糊逻辑的自适应阈值来识别微加工假肢等实时应用的步态阶段和状态。对15名健全受试者和2名经胫骨截肢者进行离线评估,结果表明,在全局参数下,该方法对姿态和摇摆阶段的识别检出率高达98%,对直线和转弯步态的识别检出率高达93.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信