An Evolutionary Learning Approach for Robot Path Planning with Fuzzy Obstacle Detection and Avoidance in a Multi-agent Environment

T. Cabreira, G. Dimuro, M. Aguiar
{"title":"An Evolutionary Learning Approach for Robot Path Planning with Fuzzy Obstacle Detection and Avoidance in a Multi-agent Environment","authors":"T. Cabreira, G. Dimuro, M. Aguiar","doi":"10.1109/BWSS.2012.13","DOIUrl":null,"url":null,"abstract":"This paper describes a Fuzzy-Genetic Algorithm Approach for path planning of mobile robots with obstacle detection and avoidance in static and dynamic scenarios. Through the software Net logo, used in simulations of multiagent applications, a seminal model was developed for the given problem. The model, which contains a robot and scenarios with or without obstacles, is responsible for determining the best path used by a robot to achieve the goal state in a shorter number of steps and avoiding collisions. Additionally, a performance evaluation of this model in comparison with A* algorithm is presented.","PeriodicalId":432252,"journal":{"name":"2012 Third Brazilian Workshop on Social Simulation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Brazilian Workshop on Social Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWSS.2012.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a Fuzzy-Genetic Algorithm Approach for path planning of mobile robots with obstacle detection and avoidance in static and dynamic scenarios. Through the software Net logo, used in simulations of multiagent applications, a seminal model was developed for the given problem. The model, which contains a robot and scenarios with or without obstacles, is responsible for determining the best path used by a robot to achieve the goal state in a shorter number of steps and avoiding collisions. Additionally, a performance evaluation of this model in comparison with A* algorithm is presented.
多智能体环境下具有模糊障碍物检测和回避的机器人路径规划的进化学习方法
本文提出了一种基于模糊遗传算法的移动机器人路径规划方法,该方法在静态和动态两种情况下具有障碍物检测和避障功能。通过在多智能体应用仿真中使用的Net logo软件,对给定的问题建立了一个开创性的模型。该模型包含一个机器人和有或没有障碍物的场景,负责确定机器人在更短的步数内达到目标状态并避免碰撞所使用的最佳路径。此外,还将该模型与a *算法进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信