{"title":"Two-dimensional heterojunction interlayer tunnel FET (Thin-TFET): From theory to applications","authors":"Mingda Li, R. Yan, D. Jena, H. Xing","doi":"10.1109/IEDM.2016.7838451","DOIUrl":null,"url":null,"abstract":"We review the conception and development of two-dimensional heterojunction interlayer field effect transistor (Thin-TFET), where a steep subthreshold swing (SS) and a high on-current are estimated theoretically. The Thin-TFET has been experimentally demonstrated using WSe2/SnSe2 stacked heterostructures, where the SS is mostly likely limited by the interfacial trap density of states and the parasitic MOSFET. Due to its vertical stacking structure, Thin-TFET intrinsically has a smaller gate-drain capacitance compared to the conventional lateral pin-TFET. In turn, this results in mitigated Miller Effect in Thin-TFET thus reducing dynamic energy dissipation in circuits.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We review the conception and development of two-dimensional heterojunction interlayer field effect transistor (Thin-TFET), where a steep subthreshold swing (SS) and a high on-current are estimated theoretically. The Thin-TFET has been experimentally demonstrated using WSe2/SnSe2 stacked heterostructures, where the SS is mostly likely limited by the interfacial trap density of states and the parasitic MOSFET. Due to its vertical stacking structure, Thin-TFET intrinsically has a smaller gate-drain capacitance compared to the conventional lateral pin-TFET. In turn, this results in mitigated Miller Effect in Thin-TFET thus reducing dynamic energy dissipation in circuits.