A smoothing based task scheduling algorithm for heterogeneous multi-cloud environment

S. K. Panda, Subhrajit Nag, P. K. Jana
{"title":"A smoothing based task scheduling algorithm for heterogeneous multi-cloud environment","authors":"S. K. Panda, Subhrajit Nag, P. K. Jana","doi":"10.1109/PDGC.2014.7030716","DOIUrl":null,"url":null,"abstract":"Task scheduling for heterogeneous multi-cloud environment is a well-known NP-complete problem. Due to exponential increase of client applications (i.e., workloads), cloud providers need to adopt an efficient task scheduling algorithm to handle workloads. Furthermore, the cloud provider may require to collaborate with other cloud providers to avoid fluctuation of demands. This workload sharing problem is referred as heterogeneous multi-cloud task scheduling problem. In this paper, we propose a task scheduling algorithm for heterogeneous multi-cloud environment. The algorithm is based on smoothing concept to organize the tasks. We perform rigorous experiments on synthetic and benchmark datasets and compare their results with two well-known multi-cloud algorithms namely, CMMS and CMAXMS. The comparison results show the superiority of the proposed algorithm in terms of two evaluation metrics, makespan and average cloud utilization.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Task scheduling for heterogeneous multi-cloud environment is a well-known NP-complete problem. Due to exponential increase of client applications (i.e., workloads), cloud providers need to adopt an efficient task scheduling algorithm to handle workloads. Furthermore, the cloud provider may require to collaborate with other cloud providers to avoid fluctuation of demands. This workload sharing problem is referred as heterogeneous multi-cloud task scheduling problem. In this paper, we propose a task scheduling algorithm for heterogeneous multi-cloud environment. The algorithm is based on smoothing concept to organize the tasks. We perform rigorous experiments on synthetic and benchmark datasets and compare their results with two well-known multi-cloud algorithms namely, CMMS and CMAXMS. The comparison results show the superiority of the proposed algorithm in terms of two evaluation metrics, makespan and average cloud utilization.
异构多云环境下基于平滑的任务调度算法
异构多云环境下的任务调度是一个众所周知的np完全问题。由于客户端应用程序(即工作负载)呈指数级增长,云提供商需要采用高效的任务调度算法来处理工作负载。此外,云提供商可能需要与其他云提供商协作,以避免需求波动。这种工作负载共享问题称为异构多云任务调度问题。本文提出了一种异构多云环境下的任务调度算法。该算法基于平滑概念来组织任务。我们在合成和基准数据集上进行了严格的实验,并将其结果与两种知名的多云算法即CMMS和CMAXMS进行了比较。对比结果表明,该算法在makespan和平均云利用率两个评价指标上具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信