On contraction analysis of synchronization of neuron networks

G. Solis-Perales, G. Obregon-Pulido
{"title":"On contraction analysis of synchronization of neuron networks","authors":"G. Solis-Perales, G. Obregon-Pulido","doi":"10.1109/LARC.2011.6086840","DOIUrl":null,"url":null,"abstract":"The synchronization of neuron networks using the contraction theory is reported in this contribution. The contraction theory provides a simple method to determine convergence of trajectories of the systems in the network instead of the Master Stability Function and the calculation of Lyapunov exponents. The objective is to determine the contraction region where once the trajectories reach such region they will converge each other and remain in such a contraction region. Such a condition lies mainly on the system parameters, network topology and coupling strength.","PeriodicalId":419849,"journal":{"name":"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LARC.2011.6086840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The synchronization of neuron networks using the contraction theory is reported in this contribution. The contraction theory provides a simple method to determine convergence of trajectories of the systems in the network instead of the Master Stability Function and the calculation of Lyapunov exponents. The objective is to determine the contraction region where once the trajectories reach such region they will converge each other and remain in such a contraction region. Such a condition lies mainly on the system parameters, network topology and coupling strength.
神经元网络同步的收缩分析
使用收缩理论的神经元网络同步被报道在这个贡献。收缩理论提供了一种简单的方法来确定网络中系统轨迹的收敛性,而不是主稳定函数和Lyapunov指数的计算。目标是确定收缩区域,一旦轨迹到达该区域,它们将彼此收敛并保持在该收缩区域。这种条件主要取决于系统参数、网络拓扑结构和耦合强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信