MockSniffer

Hengcheng Zhu, Lili Wei, Ming Wen, Yepang Liu, S. Cheung, Qin Sheng, Cui Zhou
{"title":"MockSniffer","authors":"Hengcheng Zhu, Lili Wei, Ming Wen, Yepang Liu, S. Cheung, Qin Sheng, Cui Zhou","doi":"10.1145/3324884.3416539","DOIUrl":null,"url":null,"abstract":"In unit testing, mocking is popularly used to ease test effort, reduce test flakiness, and increase test coverage by replacing the actual dependencies with simple implementations. However, there are no clear criteria to determine which dependencies in a unit test should be mocked. Inappropriate mocking can have undesirable consequences: under-mocking could result in the inability to isolate the class under test (CUT) from its dependencies while over-mocking increases the developers' burden on maintaining the mocked objects and may lead to spurious test failures. According to existing work, various factors can determine whether a dependency should be mocked. As a result, mocking decisions are often difficult to make in practice. Studies on the evolution of mocked objects also showed that developers tend to change their mocking decisions: 17% of the studied mocked objects were introduced sometime after the test scripts were created and another 13% of the originally mocked objects eventually became unmocked. In this work, we are motivated to develop an automated technique to make mocking recommendations to facilitate unit testing. We studied 10,846 test scripts in four actively maintained open-source projects that use mocked objects, aiming to characterize the dependencies thatare mocked in unit testing. Based on our observations on mocking practices, we designed and implemented a tool, MockSniffer, to identify and recommend mocks for unit tests. The tool is fully automated and requires only the CUT and its dependencies as input. It leverages machine learning techniques to make mocking recommendations by holistically considering multiple factors that can affect developers' mocking decisions. Our evaluation of Mock-Sniffer on ten open-source projects showed that it outperformed three baseline approaches, and achieved good performance in two potential application scenarios.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In unit testing, mocking is popularly used to ease test effort, reduce test flakiness, and increase test coverage by replacing the actual dependencies with simple implementations. However, there are no clear criteria to determine which dependencies in a unit test should be mocked. Inappropriate mocking can have undesirable consequences: under-mocking could result in the inability to isolate the class under test (CUT) from its dependencies while over-mocking increases the developers' burden on maintaining the mocked objects and may lead to spurious test failures. According to existing work, various factors can determine whether a dependency should be mocked. As a result, mocking decisions are often difficult to make in practice. Studies on the evolution of mocked objects also showed that developers tend to change their mocking decisions: 17% of the studied mocked objects were introduced sometime after the test scripts were created and another 13% of the originally mocked objects eventually became unmocked. In this work, we are motivated to develop an automated technique to make mocking recommendations to facilitate unit testing. We studied 10,846 test scripts in four actively maintained open-source projects that use mocked objects, aiming to characterize the dependencies thatare mocked in unit testing. Based on our observations on mocking practices, we designed and implemented a tool, MockSniffer, to identify and recommend mocks for unit tests. The tool is fully automated and requires only the CUT and its dependencies as input. It leverages machine learning techniques to make mocking recommendations by holistically considering multiple factors that can affect developers' mocking decisions. Our evaluation of Mock-Sniffer on ten open-source projects showed that it outperformed three baseline approaches, and achieved good performance in two potential application scenarios.
MockSniffer
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信