Improve Example-Based Machine Translation Quality for Low-Resource Language Using Ontology

Md. Anwarus Salam Khan, Setsuo Yamada, T. Nishino
{"title":"Improve Example-Based Machine Translation Quality for Low-Resource Language Using Ontology","authors":"Md. Anwarus Salam Khan, Setsuo Yamada, T. Nishino","doi":"10.2991/ijndc.2017.5.3.6","DOIUrl":null,"url":null,"abstract":"In this research we propose to use ontology to improve the performance of an EBMT system for low-resource language pair. The EBMT architecture use (CSTs) and unknown word translation mechanism. CSTs consist of a chunk in source-language, a string in target-language, and word alignment information. For unknown word translation, we used WordNet hypernym tree and English-Bengali dictionary. CSTs improved the wide-coverage by 57 points and quality by 48.81 points in human evaluation. Currently 64.29% of the test-set translations by the system were acceptable. The combined solutions of CSTs and unknown words generated 67.85% acceptable translations from the test-set. Unknown words mechanism improved translation quality by 3.56 points in human evaluation.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.2017.5.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this research we propose to use ontology to improve the performance of an EBMT system for low-resource language pair. The EBMT architecture use (CSTs) and unknown word translation mechanism. CSTs consist of a chunk in source-language, a string in target-language, and word alignment information. For unknown word translation, we used WordNet hypernym tree and English-Bengali dictionary. CSTs improved the wide-coverage by 57 points and quality by 48.81 points in human evaluation. Currently 64.29% of the test-set translations by the system were acceptable. The combined solutions of CSTs and unknown words generated 67.85% acceptable translations from the test-set. Unknown words mechanism improved translation quality by 3.56 points in human evaluation.
利用本体提高基于实例的低资源语言机器翻译质量
在本研究中,我们提出使用本体来提高低资源语言对的EBMT系统的性能。EBMT体系结构使用(cst)和未知词翻译机制。cst由源语言的块、目标语言的字符串和单词对齐信息组成。对于未知词的翻译,我们使用了WordNet超词树和英-孟加拉语词典。人工评价中,CSTs的覆盖面提高57分,质量提高48.81分。目前,64.29%的测试集翻译是可接受的。cst和未知词的组合解产生67.85%的可接受译文。未知词机制在人工评价中提高了3.56分的翻译质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信