On the Use of Distribution-based Metrics for the Evaluation of Drivers’ Fixation Maps Against Spatial Baselines

Jaime Maldonado, Lino Antoni Giefer
{"title":"On the Use of Distribution-based Metrics for the Evaluation of Drivers’ Fixation Maps Against Spatial Baselines","authors":"Jaime Maldonado, Lino Antoni Giefer","doi":"10.1145/3517031.3529629","DOIUrl":null,"url":null,"abstract":"A distinctive characteristic of human driver behavior is the spatial bias of gaze allocation toward the vanishing point of the road. This behavior can be evaluated by comparing fixation maps against a spatial-bias baseline using typical metrics such as the Pearson’s Correlation Coefficient (CC) and the Kullback-Leibler divergence (KL). CC and KL penalize false positives and negatives differently, which implies that they can be affected by the characteristics of the baseline. In this paper, we analyze the use of CC and KL for the evaluation of drivers’ fixation maps against two types of spatial-bias baselines: baselines obtained from recorded fixation maps (data-based) and 2D-Gaussian baselines (function-based). Our results indicate that the use of CC can lead to misleading interpretations due to single fixations outside of the spatial bias area when compared to data-based baselines. Thus, we argue that KL and CC should be considered simultaneously under specific modeling assumptions.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3529629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A distinctive characteristic of human driver behavior is the spatial bias of gaze allocation toward the vanishing point of the road. This behavior can be evaluated by comparing fixation maps against a spatial-bias baseline using typical metrics such as the Pearson’s Correlation Coefficient (CC) and the Kullback-Leibler divergence (KL). CC and KL penalize false positives and negatives differently, which implies that they can be affected by the characteristics of the baseline. In this paper, we analyze the use of CC and KL for the evaluation of drivers’ fixation maps against two types of spatial-bias baselines: baselines obtained from recorded fixation maps (data-based) and 2D-Gaussian baselines (function-based). Our results indicate that the use of CC can lead to misleading interpretations due to single fixations outside of the spatial bias area when compared to data-based baselines. Thus, we argue that KL and CC should be considered simultaneously under specific modeling assumptions.
基于分布的指标在空间基线下驾驶员注视图评价中的应用
人类驾驶员行为的一个显著特征是视线分配的空间偏向于道路的消失点。这种行为可以通过使用典型指标(如Pearson相关系数(CC)和Kullback-Leibler散度(KL))将注视图与空间偏差基线进行比较来评估。CC和KL对假阳性和假阴性的惩罚不同,这意味着它们可能受到基线特征的影响。在本文中,我们分析了使用CC和KL对两种类型的空间偏差基线进行驾驶员注视图评估的方法:从记录的注视图(基于数据的)和2d高斯基线(基于函数的)获得的基线。我们的研究结果表明,与基于数据的基线相比,CC的使用可能会导致误导性的解释,因为它是在空间偏差区域之外的单一固定点。因此,我们认为在特定的建模假设下,KL和CC应该同时考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信