Hydrodynamic Interactions of the Truncated Porous Vertical Circular Cylinder With Water Waves

Charaf Ouled Housseine, Š. Malenica, G. D. Hauteclocque, Xiaobo Chen
{"title":"Hydrodynamic Interactions of the Truncated Porous Vertical Circular Cylinder With Water Waves","authors":"Charaf Ouled Housseine, Š. Malenica, G. D. Hauteclocque, Xiaobo Chen","doi":"10.1115/OMAE2018-78221","DOIUrl":null,"url":null,"abstract":"Wave diffraction-radiation by a porous body is investigated here. Linear potential flow theory is used and the associated Boundary Value Problem (BVP) is formulated in frequency domain within a linear porosity condition. First, a semi-analytical solution for a truncated porous circular cylinder is developed using the dedicated eigenfunction expansion method. Then the general case of wave diffraction-radiation by a porous body with an arbitrary shape is discussed and solved through Boundary Integral Equation Method (BIEM).\n The main goal of these developments is to adapt the existing diffraction-radiation code (HYDROSTAR) for that type of applications. Thus the present study of the porous cylinder consists a validation work of (BIEM) numerical implementation. Excellent agreement between analytical and numerical results is observed. Porosity influence on wave exciting forces, added mass and damping is also investigated.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Wave diffraction-radiation by a porous body is investigated here. Linear potential flow theory is used and the associated Boundary Value Problem (BVP) is formulated in frequency domain within a linear porosity condition. First, a semi-analytical solution for a truncated porous circular cylinder is developed using the dedicated eigenfunction expansion method. Then the general case of wave diffraction-radiation by a porous body with an arbitrary shape is discussed and solved through Boundary Integral Equation Method (BIEM). The main goal of these developments is to adapt the existing diffraction-radiation code (HYDROSTAR) for that type of applications. Thus the present study of the porous cylinder consists a validation work of (BIEM) numerical implementation. Excellent agreement between analytical and numerical results is observed. Porosity influence on wave exciting forces, added mass and damping is also investigated.
截顶多孔垂直圆柱与水波的水动力相互作用
本文研究了多孔体的波衍射辐射。采用线性势流理论,在线性孔隙度条件下建立了相应的频域边值问题。首先,利用专用的特征函数展开法,得到了截形多孔圆柱的半解析解。然后讨论了任意形状多孔体的波衍射辐射的一般情况,并用边界积分方程法进行了求解。这些发展的主要目标是使现有的衍射辐射代码(HYDROSTAR)适应这种类型的应用。因此,本文对多孔圆柱体的研究是对BIEM数值实现的验证工作。分析结果与数值结果非常吻合。研究了孔隙度对波浪激振力、附加质量和阻尼的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信