Frequent itemset mining on graphics processors

Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He, Qiong Luo
{"title":"Frequent itemset mining on graphics processors","authors":"Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He, Qiong Luo","doi":"10.1145/1565694.1565702","DOIUrl":null,"url":null,"abstract":"We present two efficient Apriori implementations of Frequent Itemset Mining (FIM) that utilize new-generation graphics processing units (GPUs). Our implementations take advantage of the GPU's massively multi-threaded SIMD (Single Instruction, Multiple Data) architecture. Both implementations employ a bitmap data structure to exploit the GPU's SIMD parallelism and to accelerate the frequency counting operation. One implementation runs entirely on the GPU and eliminates intermediate data transfer between the GPU memory and the CPU memory. The other implementation employs both the GPU and the CPU for processing. It represents itemsets in a trie, and uses the CPU for trie traversing and incremental maintenance. Our preliminary results show that both implementations achieve a speedup of up to two orders of magnitude over optimized CPU Apriori implementations on a PC with an NVIDIA GTX 280 GPU and a quad-core CPU.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1565694.1565702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

We present two efficient Apriori implementations of Frequent Itemset Mining (FIM) that utilize new-generation graphics processing units (GPUs). Our implementations take advantage of the GPU's massively multi-threaded SIMD (Single Instruction, Multiple Data) architecture. Both implementations employ a bitmap data structure to exploit the GPU's SIMD parallelism and to accelerate the frequency counting operation. One implementation runs entirely on the GPU and eliminates intermediate data transfer between the GPU memory and the CPU memory. The other implementation employs both the GPU and the CPU for processing. It represents itemsets in a trie, and uses the CPU for trie traversing and incremental maintenance. Our preliminary results show that both implementations achieve a speedup of up to two orders of magnitude over optimized CPU Apriori implementations on a PC with an NVIDIA GTX 280 GPU and a quad-core CPU.
图形处理器上频繁的项集挖掘
我们提出了两种利用新一代图形处理单元(gpu)的频繁项集挖掘(FIM)的高效Apriori实现。我们的实现利用了GPU的大规模多线程SIMD(单指令,多数据)架构。两种实现都采用位图数据结构来利用GPU的SIMD并行性并加速频率计数操作。一种实现完全在GPU上运行,消除了GPU内存和CPU内存之间的中间数据传输。另一种实现同时使用GPU和CPU进行处理。它表示树中的项集,并使用CPU进行树遍历和增量维护。我们的初步结果表明,在使用NVIDIA GTX 280 GPU和四核CPU的PC上,两种实现都比优化后的CPU Apriori实现的速度提高了两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信