Deficiency for meromorphic solutions of schröder equations

K. Ishizaki, Niro Yanagihara ‡
{"title":"Deficiency for meromorphic solutions of schröder equations","authors":"K. Ishizaki, Niro Yanagihara ‡","doi":"10.1080/02781070410001731701","DOIUrl":null,"url":null,"abstract":"Eremenko and Sodin proved that meromorphic solution f (z) of the Schröder equation f (sz) = R (f (z)), |s| > 1, has no Valiron deficiency other than exceptional values of R(z). We consider transcendental meromorphic solutions of non-autonomous equation f (sz) =R (z, f (z)), |s| > 1. It is shown that there exists an equation of this form possessing a transcendental meromorphic solution, which has a Valiron deficiency other than a Nevanlinna deficiency. We also give some generalizations of the Eremenko and Sodin theorem for algebraic functions as targets.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070410001731701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Eremenko and Sodin proved that meromorphic solution f (z) of the Schröder equation f (sz) = R (f (z)), |s| > 1, has no Valiron deficiency other than exceptional values of R(z). We consider transcendental meromorphic solutions of non-autonomous equation f (sz) =R (z, f (z)), |s| > 1. It is shown that there exists an equation of this form possessing a transcendental meromorphic solution, which has a Valiron deficiency other than a Nevanlinna deficiency. We also give some generalizations of the Eremenko and Sodin theorem for algebraic functions as targets.
schröder方程亚纯解的缺陷
Eremenko和Sodin证明了Schröder方程f (sz) = R(f (z))的亚纯解f (z),除R(z)有异常值外,不存在Valiron缺陷。研究非自治方程f (sz) =R (z, f (z)), |s| > 1的超越亚纯解。证明了存在一个具有超越亚纯解的这种形式的方程,它具有Valiron缺陷而不是Nevanlinna缺陷。我们还以代数函数为目标,对Eremenko和Sodin定理作了一些推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信