Numerical investigation of the lateral and vertical leakage currents and breakdown regimes in GaN-on-Silicon vertical structures

D. Cornigli, S. Reggiani, E. Gnani, A. Gnudi, G. Baccarani, P. Moens, P. Vanmeerbeek, A. Banerjee, G. Meneghesso
{"title":"Numerical investigation of the lateral and vertical leakage currents and breakdown regimes in GaN-on-Silicon vertical structures","authors":"D. Cornigli, S. Reggiani, E. Gnani, A. Gnudi, G. Baccarani, P. Moens, P. Vanmeerbeek, A. Banerjee, G. Meneghesso","doi":"10.1109/IEDM.2015.7409633","DOIUrl":null,"url":null,"abstract":"A 2D TCAD-based approach is proposed to investigate the leakage current and breakdown regime of GaN/AlGaN/Si structures at different ambient temperatures. Deep-level traps originated by Carbon doping, impact-ionization generation and thermally activated Poole-Frenkel conduction have been modeled to assess the role of such physical mechanisms on the forward-bias leakage current. A good agreement with experimental data has been obtained by implementing conduction and valence mini-bands within the deeper transition layer created by conductive dislocation defects or by superlattice structures. A 2D isolation device has been investigated up to breakdown and, for the first time to our knowledge, we prove with 2D TCAD simulation that in GaN based devices both impact-ionization and Poole-Frenkel conduction effects must be taken into account to correctly match experimental data.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

A 2D TCAD-based approach is proposed to investigate the leakage current and breakdown regime of GaN/AlGaN/Si structures at different ambient temperatures. Deep-level traps originated by Carbon doping, impact-ionization generation and thermally activated Poole-Frenkel conduction have been modeled to assess the role of such physical mechanisms on the forward-bias leakage current. A good agreement with experimental data has been obtained by implementing conduction and valence mini-bands within the deeper transition layer created by conductive dislocation defects or by superlattice structures. A 2D isolation device has been investigated up to breakdown and, for the first time to our knowledge, we prove with 2D TCAD simulation that in GaN based devices both impact-ionization and Poole-Frenkel conduction effects must be taken into account to correctly match experimental data.
硅基氮化镓垂直结构中横向和垂直泄漏电流及击穿状态的数值研究
提出了一种基于二维tcad的方法来研究不同环境温度下GaN/AlGaN/Si结构的泄漏电流和击穿情况。由碳掺杂、冲击电离产生和热激活的普尔-弗伦克尔传导产生的深能级陷阱已经被建模,以评估这些物理机制对正偏置泄漏电流的作用。通过在由导电位错缺陷或超晶格结构形成的更深过渡层内实现导电和价态微带,得到了与实验数据一致的结果。二维隔离装置已经被研究到击穿,并且,据我们所知,我们第一次用二维TCAD模拟证明,在基于GaN的装置中,必须考虑碰撞电离和普尔-弗伦克尔传导效应,以正确匹配实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信