GLZSS: LZSS Lossless Data Compression Can Be Faster

Yuan Zu, Bei Hua
{"title":"GLZSS: LZSS Lossless Data Compression Can Be Faster","authors":"Yuan Zu, Bei Hua","doi":"10.1145/2588768.2576785","DOIUrl":null,"url":null,"abstract":"The need for data compression has grown for better utilization of network bandwidth and data storage space. LZ77 is the most widely used data compression method, which has many variants in practical applications. The biggest obstacle that prevents data compression from being used in high-speed applications is its high computation overhead. In this paper, we focus on parallelizing LZSS that is a derivative of LZ77 on GPU using the NVIDIA CUDA framework to improve the compression speed. Based on in-depth understanding of LZSS's dictionary-based compression mechanism and GPU's architectural features, we propose an effective method to parallelize LZSS compression algorithm on GPU. The biggest merit of this method is that it eliminates threads serialization by carefully redesign the algorithm process. Experiments on an NVIDIA GTX 590 machine with 13 benchmark files from real world demonstrate the effectiveness of our method, which achieves 2x speedup over existing work.","PeriodicalId":394600,"journal":{"name":"Proceedings of Workshop on General Purpose Processing Using GPUs","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshop on General Purpose Processing Using GPUs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588768.2576785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The need for data compression has grown for better utilization of network bandwidth and data storage space. LZ77 is the most widely used data compression method, which has many variants in practical applications. The biggest obstacle that prevents data compression from being used in high-speed applications is its high computation overhead. In this paper, we focus on parallelizing LZSS that is a derivative of LZ77 on GPU using the NVIDIA CUDA framework to improve the compression speed. Based on in-depth understanding of LZSS's dictionary-based compression mechanism and GPU's architectural features, we propose an effective method to parallelize LZSS compression algorithm on GPU. The biggest merit of this method is that it eliminates threads serialization by carefully redesign the algorithm process. Experiments on an NVIDIA GTX 590 machine with 13 benchmark files from real world demonstrate the effectiveness of our method, which achieves 2x speedup over existing work.
GLZSS: LZSS无损数据压缩速度更快
为了更好地利用网络带宽和数据存储空间,对数据压缩的需求不断增长。LZ77是应用最广泛的数据压缩方法,在实际应用中有很多变体。阻止数据压缩在高速应用程序中使用的最大障碍是它的高计算开销。在本文中,我们专注于使用NVIDIA CUDA框架在GPU上并行化LZSS, LZSS是LZ77的衍生物,以提高压缩速度。在深入了解LZSS基于字典的压缩机制和GPU架构特点的基础上,提出了一种有效的LZSS压缩算法在GPU上并行化的方法。这种方法的最大优点是,它通过仔细地重新设计算法过程来消除线程序列化。在NVIDIA GTX 590机器上进行了13个真实基准测试文件的实验,证明了我们的方法的有效性,比现有工作实现了2倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信