Multisensor multitarget tracking methods based on particle filter

Xiong Wei, Zhang Jing-wei, He You
{"title":"Multisensor multitarget tracking methods based on particle filter","authors":"Xiong Wei, Zhang Jing-wei, He You","doi":"10.1109/ISADS.2005.1452073","DOIUrl":null,"url":null,"abstract":"In order to solve the multisensor multitarget tracking problem of the non-Gaussian nonlinear systems, the paper presents a multisensor joint probabilistic data association particle (MJPDAP) algorithm. At first, the algorithm permutes and combines the measurement from each sensor using the rule of generalized S-D assignment algorithm. Then, all of measurements in each assignment are combined into one equivalent measurement and the joint likelihood function of the equivalent measurement is calculated. Finally, the particle weight is updated and the state estimation of the fusion center is obtained, using joint probability data association (JPDA) method. In this paper, some Monte Carlo simulations are used to analyze the performance of the new method. The simulation results show the MJPDAP can effectively track multitarget in the nonlinear systems, and be of much better performance than the single-sensor joint probabilistic data association particle (SJPDAP) algorithm.","PeriodicalId":120577,"journal":{"name":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2005.1452073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to solve the multisensor multitarget tracking problem of the non-Gaussian nonlinear systems, the paper presents a multisensor joint probabilistic data association particle (MJPDAP) algorithm. At first, the algorithm permutes and combines the measurement from each sensor using the rule of generalized S-D assignment algorithm. Then, all of measurements in each assignment are combined into one equivalent measurement and the joint likelihood function of the equivalent measurement is calculated. Finally, the particle weight is updated and the state estimation of the fusion center is obtained, using joint probability data association (JPDA) method. In this paper, some Monte Carlo simulations are used to analyze the performance of the new method. The simulation results show the MJPDAP can effectively track multitarget in the nonlinear systems, and be of much better performance than the single-sensor joint probabilistic data association particle (SJPDAP) algorithm.
基于粒子滤波的多传感器多目标跟踪方法
为了解决非高斯非线性系统的多传感器多目标跟踪问题,提出了一种多传感器联合概率数据关联粒子(MJPDAP)算法。该算法首先利用广义S-D分配算法对各传感器的测量值进行排列和组合。然后,将每个分配中的所有测量值合并为一个等效测量值,并计算等效测量值的联合似然函数。最后,利用联合概率数据关联(JPDA)方法更新粒子权值,得到融合中心的状态估计。本文通过蒙特卡罗仿真分析了该方法的性能。仿真结果表明,MJPDAP算法能够有效地跟踪非线性系统中的多目标,并且比单传感器联合概率数据关联粒子(SJPDAP)算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信