A Comparative Study of Extreme Learning Machine Pruning Based on Detection of Linear Independence

L. D. Tavares, R. R. Saldanha, D. Vieira, A. C. Lisboa
{"title":"A Comparative Study of Extreme Learning Machine Pruning Based on Detection of Linear Independence","authors":"L. D. Tavares, R. R. Saldanha, D. Vieira, A. C. Lisboa","doi":"10.1109/ICTAI.2014.20","DOIUrl":null,"url":null,"abstract":"Extreme Learning Machine (ELM) is gaining fairly popularity in training neural networks, due to its simplicity and speed. However, the number of neurons in the hidden layer is still an open problem. This paper proposes a method for pruning the hidden layer neurons based on the linear combination of the hidden layer weights and the input data and compare four methods of detecting linear dependence between vectors.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Extreme Learning Machine (ELM) is gaining fairly popularity in training neural networks, due to its simplicity and speed. However, the number of neurons in the hidden layer is still an open problem. This paper proposes a method for pruning the hidden layer neurons based on the linear combination of the hidden layer weights and the input data and compare four methods of detecting linear dependence between vectors.
基于线性独立性检测的极限学习机剪枝方法的比较研究
极限学习机(ELM)由于其简单和快速,在神经网络训练中越来越受欢迎。然而,隐藏层神经元的数量仍然是一个开放的问题。本文提出了一种基于隐层权值与输入数据线性组合的隐层神经元剪枝方法,并比较了四种检测向量间线性相关性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信