Human Body Parts Tracking Using Sequential Markov Random Fields

Xiao-Qin Cao, Jia Zeng, Zhi-Qiang Liu
{"title":"Human Body Parts Tracking Using Sequential Markov Random Fields","authors":"Xiao-Qin Cao, Jia Zeng, Zhi-Qiang Liu","doi":"10.1109/ICPR.2010.1158","DOIUrl":null,"url":null,"abstract":"Automatically tracking human body parts is a difficult problem because of background clutters, missing body parts, and the high degrees of freedoms and complex kinematics of the articulated human body. This paper presents the sequential Markov random fields (SMRFs) for tracking and labeling moving human body parts automatically by learning the spatio-temporal structures of human motions in the setting of occlusions and clutters. We employ a hybrid strategy, where the temporal dependencies between two successive human poses are described by the sequential Monte Carlo method, and the spatial relationships between body parts in a pose is described by the Markov random fields. Efficient inference and learning algorithms are developed based on the relaxation labeling. Experimental results show that the SMRF can effectively track human body parts in natural scenes.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatically tracking human body parts is a difficult problem because of background clutters, missing body parts, and the high degrees of freedoms and complex kinematics of the articulated human body. This paper presents the sequential Markov random fields (SMRFs) for tracking and labeling moving human body parts automatically by learning the spatio-temporal structures of human motions in the setting of occlusions and clutters. We employ a hybrid strategy, where the temporal dependencies between two successive human poses are described by the sequential Monte Carlo method, and the spatial relationships between body parts in a pose is described by the Markov random fields. Efficient inference and learning algorithms are developed based on the relaxation labeling. Experimental results show that the SMRF can effectively track human body parts in natural scenes.
基于顺序马尔可夫随机场的人体部位跟踪
由于背景杂乱、缺少人体部件以及关节人体的高自由度和复杂的运动特性,人体部位的自动跟踪是一个难题。本文提出了一种序列马尔可夫随机场(SMRFs),通过学习人体运动在遮挡和杂乱环境下的时空结构,实现对人体运动部位的自动跟踪和标记。我们采用了一种混合策略,其中两个连续人体姿势之间的时间依赖关系由顺序蒙特卡罗方法描述,而一个姿势中身体部位之间的空间关系由马尔可夫随机场描述。基于松弛标记开发了高效的推理和学习算法。实验结果表明,该方法可以有效地跟踪自然场景中的人体部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信