The UFRJ Entry for the Voice Conversion Challenge 2020

Victor Costa, Igor M. Quintanilha, S. L. Netto, L. Biscainho
{"title":"The UFRJ Entry for the Voice Conversion Challenge 2020","authors":"Victor Costa, Igor M. Quintanilha, S. L. Netto, L. Biscainho","doi":"10.21437/vcc_bc.2020-29","DOIUrl":null,"url":null,"abstract":"This paper presents our system submitted to the Task 1 of the 2020 edition of the voice conversion challenge (VCC), based on CycleGAN to convert mel-spectograms and MelGAN to synthesize converted speech. CycleGAN is a GAN-based morphing network that uses a cyclic reconstruction cost to allow training with non-parallel corpora. MelGAN is a GAN based non-autoregressive neural vocoder that uses a multi-scale discriminator to efficiently capture complexities of speech signals and achieve high quality signals with extremely fast generation. In the VCC 2020 evaluation our system achieved mean opinion scores of 1.92 for English listeners and 1.81 for Japanese listeners, and averaged similarity score of 2.51 for English listeners and 2.59 for Japanese listeners. The results suggest that possi-bly the use of neural vocoders to represent converted speech is a problem that demand specific training strategies and the use of adaptation techniques.","PeriodicalId":355114,"journal":{"name":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/vcc_bc.2020-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents our system submitted to the Task 1 of the 2020 edition of the voice conversion challenge (VCC), based on CycleGAN to convert mel-spectograms and MelGAN to synthesize converted speech. CycleGAN is a GAN-based morphing network that uses a cyclic reconstruction cost to allow training with non-parallel corpora. MelGAN is a GAN based non-autoregressive neural vocoder that uses a multi-scale discriminator to efficiently capture complexities of speech signals and achieve high quality signals with extremely fast generation. In the VCC 2020 evaluation our system achieved mean opinion scores of 1.92 for English listeners and 1.81 for Japanese listeners, and averaged similarity score of 2.51 for English listeners and 2.59 for Japanese listeners. The results suggest that possi-bly the use of neural vocoders to represent converted speech is a problem that demand specific training strategies and the use of adaptation techniques.
2020年语音转换挑战赛UFRJ参赛作品
本文介绍了我们提交给2020年版语音转换挑战(VCC)任务1的系统,该系统基于CycleGAN转换mel- spectrum,基于MelGAN合成转换后的语音。CycleGAN是一种基于gan的变形网络,它使用循环重建成本来允许非并行语料库的训练。MelGAN是一种基于GAN的非自回归神经声码器,它使用多尺度鉴别器来有效捕获语音信号的复杂性,并以极快的生成速度获得高质量的信号。在VCC 2020评估中,我们的系统对英语听众的平均意见得分为1.92,对日语听众的平均意见得分为1.81,对英语听众的平均相似度得分为2.51,对日语听众的平均相似度得分为2.59。结果表明,使用神经声码器来表示转换后的语音可能是一个需要特定训练策略和使用适应技术的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信