Thomas N. Reynolds, W. Harrison, Rohit Chadha, G. Allwein
{"title":"Strongly bounded termination with applications to security and hardware synthesis","authors":"Thomas N. Reynolds, W. Harrison, Rohit Chadha, G. Allwein","doi":"10.1145/3406089.3409029","DOIUrl":null,"url":null,"abstract":"Termination checking is a classic static analysis, and, within this focus, there are type-based approaches that formalize termination analysis as type systems (i.e., so that all well-typed programs terminate). But there are situations where a stronger termination property (which we call strongly-bounded termination) must be determined and, accordingly, we explore this property via a variant of the simply-typed λ-calculus called the bounded-time λ-calculus (BTC). This paper presents the BTC and its semantics and metatheory through a Coq formalization. Important examples (e.g., hardware synthesis from functional languages and detection of covert timing channels) motivating strongly-bounded termination and BTC are described as well.","PeriodicalId":207693,"journal":{"name":"Proceedings of the 5th ACM SIGPLAN International Workshop on Type-Driven Development","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGPLAN International Workshop on Type-Driven Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406089.3409029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Termination checking is a classic static analysis, and, within this focus, there are type-based approaches that formalize termination analysis as type systems (i.e., so that all well-typed programs terminate). But there are situations where a stronger termination property (which we call strongly-bounded termination) must be determined and, accordingly, we explore this property via a variant of the simply-typed λ-calculus called the bounded-time λ-calculus (BTC). This paper presents the BTC and its semantics and metatheory through a Coq formalization. Important examples (e.g., hardware synthesis from functional languages and detection of covert timing channels) motivating strongly-bounded termination and BTC are described as well.