Targeted preprossessing for weight reduction in NILM datasets

Francisco Carrasco Serrano, Johanna Friederike May
{"title":"Targeted preprossessing for weight reduction in NILM datasets","authors":"Francisco Carrasco Serrano, Johanna Friederike May","doi":"10.1109/energycon53164.2022.9830491","DOIUrl":null,"url":null,"abstract":"This paper explores variables for NILM dataset creation, focusing on the relationship between measurement frequency, dataset weight, micro and macro characteristics, and prepossessing. Measurements show that a frequency of 2 kHz allows micro analysis by FFT decomposition and high resolution macro analysis by 0.02 s resampling. Storing only features of interest such as events or harmonic frequencies show potential for diminishing the weight of the dataset while keeping insightful data.","PeriodicalId":106388,"journal":{"name":"2022 IEEE 7th International Energy Conference (ENERGYCON)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/energycon53164.2022.9830491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores variables for NILM dataset creation, focusing on the relationship between measurement frequency, dataset weight, micro and macro characteristics, and prepossessing. Measurements show that a frequency of 2 kHz allows micro analysis by FFT decomposition and high resolution macro analysis by 0.02 s resampling. Storing only features of interest such as events or harmonic frequencies show potential for diminishing the weight of the dataset while keeping insightful data.
针对NILM数据集的减权目标预处理
本文探讨了NILM数据集创建的变量,重点讨论了测量频率、数据集权重、微观和宏观特征以及先验之间的关系。测量结果表明,2 kHz的频率可以通过FFT分解进行微观分析,通过0.02 s重采样进行高分辨率宏观分析。只存储感兴趣的特征,如事件或谐波频率,可以在保持有洞察力的数据的同时减少数据集的权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信