Background Subtraction for Real-Time Video Analytics Based on Multi-hypothesis Mixture-of-Gaussians

Mahfuzul Haque, M. Murshed
{"title":"Background Subtraction for Real-Time Video Analytics Based on Multi-hypothesis Mixture-of-Gaussians","authors":"Mahfuzul Haque, M. Murshed","doi":"10.1109/AVSS.2012.15","DOIUrl":null,"url":null,"abstract":"Robust background subtraction (BS) is essential for high quality foreground detection in most video analytics systems. Recent BS techniques achieve superior detection quality mostly by exploiting the complementary strengths of multiple background models or processing stages. Consequently, these techniques fail to meet the operational requirements of real-time video analytics due to high computational overhead where BS is just the primary processing task. In this paper, we propose a new BS technique, named multi-hypothesis mixture-of-Gaussians (MH-MOG), suitable for real-time video analytics. The essential idea is to maintain a single background model based on perception-aware mixture-of-Gaussians and then, generating multiple detection hypotheses with different processing bases. Finally, only during the detection stage, the complementary strengths of the hypotheses are exploited to achieve superior detection quality without significant computational overhead. Comprehensive experimental evaluation validates the efficacy of MH-MOG.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Robust background subtraction (BS) is essential for high quality foreground detection in most video analytics systems. Recent BS techniques achieve superior detection quality mostly by exploiting the complementary strengths of multiple background models or processing stages. Consequently, these techniques fail to meet the operational requirements of real-time video analytics due to high computational overhead where BS is just the primary processing task. In this paper, we propose a new BS technique, named multi-hypothesis mixture-of-Gaussians (MH-MOG), suitable for real-time video analytics. The essential idea is to maintain a single background model based on perception-aware mixture-of-Gaussians and then, generating multiple detection hypotheses with different processing bases. Finally, only during the detection stage, the complementary strengths of the hypotheses are exploited to achieve superior detection quality without significant computational overhead. Comprehensive experimental evaluation validates the efficacy of MH-MOG.
基于多假设混合高斯的实时视频分析背景减法
在大多数视频分析系统中,鲁棒背景减法(BS)是实现高质量前景检测的关键。近年来的多背景分析技术主要是利用多个背景模型或处理阶段的互补优势来实现较好的检测质量。因此,由于高计算开销,这些技术无法满足实时视频分析的操作要求,其中BS只是主要的处理任务。在本文中,我们提出了一种新的BS技术,称为多假设混合高斯(MH-MOG),适用于实时视频分析。其基本思想是基于感知的混合高斯模型维持一个单一的背景模型,然后用不同的处理基础生成多个检测假设。最后,只有在检测阶段,假设的互补优势才能被利用,从而在没有显著计算开销的情况下获得更高的检测质量。综合实验评价验证了MH-MOG的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信