A numerical approach to calculate multivariate transcendental equations in complex domain

F. Zhu, Z. Qian, Bin Wang
{"title":"A numerical approach to calculate multivariate transcendental equations in complex domain","authors":"F. Zhu, Z. Qian, Bin Wang","doi":"10.1109/SPAWDA.2016.7829954","DOIUrl":null,"url":null,"abstract":"A numerical approach to calculate multivariate transcendental equations in complex number domain that can be applied to solve dispersion equation is presented here. The mathematical derivations of the convergence of the moduli of the equations around null point are presented strictly, when the transcendental equation is univariate. Similar process also applies to the case when the equations are multivariate. For multivariate equations, the forms of scanning elements are chosen according to the numbers of the variables and the dimensions of the solution. To validate the proposed approach, we calculate the dispersion cures of wave propagation in an infinite piezoelectric plate. As a result, the three-dimensional dispersion curves of complex wave numbers and real frequencies are obtained correctly.","PeriodicalId":243839,"journal":{"name":"2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA.2016.7829954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A numerical approach to calculate multivariate transcendental equations in complex number domain that can be applied to solve dispersion equation is presented here. The mathematical derivations of the convergence of the moduli of the equations around null point are presented strictly, when the transcendental equation is univariate. Similar process also applies to the case when the equations are multivariate. For multivariate equations, the forms of scanning elements are chosen according to the numbers of the variables and the dimensions of the solution. To validate the proposed approach, we calculate the dispersion cures of wave propagation in an infinite piezoelectric plate. As a result, the three-dimensional dispersion curves of complex wave numbers and real frequencies are obtained correctly.
复域多元超越方程的数值计算方法
本文给出了复数域多元超越方程的一种数值计算方法,该方法可用于求解色散方程。给出了当超越方程为单变量时,方程模在零点附近收敛性的数学推导。类似的过程也适用于多元方程的情况。对于多元方程,扫描元素的形式是根据变量的个数和解的维数来选择的。为了验证所提出的方法,我们计算了波在无限压电板中传播的色散曲线。得到了复波数和实频率的三维频散曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信