Defocus Magnification Using Conditional Adversarial Networks

P. Sakurikar, Ishit Mehta, P J Narayanan
{"title":"Defocus Magnification Using Conditional Adversarial Networks","authors":"P. Sakurikar, Ishit Mehta, P J Narayanan","doi":"10.1109/WACV.2019.00147","DOIUrl":null,"url":null,"abstract":"Defocus magnification is the process of rendering a shallow depth-of-field in an image captured using a camera with a narrow aperture. Defocus magnification is a useful tool in photography for emphasis on the subject and for highlighting background bokeh. Estimating the per-pixel blur kernel or the depth-map of the scene followed by spatially-varying re-blurring is the standard approach to defocus magnification. We propose a single-step approach that directly converts a narrow-aperture image to a wide-aperture image. We use a conditional adversarial network trained on multi-aperture images created from light-fields. We use a novel loss term based on a composite focus measure to improve generalization and show high quality defocus magnification.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Defocus magnification is the process of rendering a shallow depth-of-field in an image captured using a camera with a narrow aperture. Defocus magnification is a useful tool in photography for emphasis on the subject and for highlighting background bokeh. Estimating the per-pixel blur kernel or the depth-map of the scene followed by spatially-varying re-blurring is the standard approach to defocus magnification. We propose a single-step approach that directly converts a narrow-aperture image to a wide-aperture image. We use a conditional adversarial network trained on multi-aperture images created from light-fields. We use a novel loss term based on a composite focus measure to improve generalization and show high quality defocus magnification.
使用条件对抗网络的离焦放大
离焦放大是在使用窄光圈相机拍摄的图像中渲染浅景深的过程。散焦放大在摄影中是一个很有用的工具,用于强调主体和突出背景散景。估计逐像素模糊核或场景的深度图,然后进行空间变化的再模糊是散焦放大的标准方法。我们提出了一种直接将窄光圈图像转换为大光圈图像的单步方法。我们使用了一个条件对抗网络,该网络对由光场生成的多孔径图像进行了训练。我们使用了一种新的基于复合聚焦度量的损失项来提高泛化和高质量的离焦放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信