SNS Fatigue Extraction by Analyzing Twitter Data

Tohma Okafuji, Yuanyuan Wang, Yukiko Kawai
{"title":"SNS Fatigue Extraction by Analyzing Twitter Data","authors":"Tohma Okafuji, Yuanyuan Wang, Yukiko Kawai","doi":"10.1109/GCCE50665.2020.9292029","DOIUrl":null,"url":null,"abstract":"SNS fatigue has become a problem in SNS, i.e., Twitter and Facebook. In this work, we define it as “physical and mental fatigue caused by using SNS” This is one of the most widely used stress experiences on Twitter among young people. Therefore, we analyze the causes of SNS fatigue on Twitter to extract SNS fatigue using tweet data, we aim to create an index to determine SNS fatigue to reduce SNS stress in the future. In this paper, we collected questionnaires about how much stress was felt by 10 Twitter users on 25 events that could cause stress in Twitter usage. Then, we classified the causes of SNS fatigue into three main labels by a principal component analysis. For extracting SNS fatigue, we collect tweets and label those collected tweets to extract feature words of the tweets for each label. Also, we create a classifier for the causes of SNS fatigue using a machine learning algorithm. In this way, SNS fatigue prediction and SNS stress reduction can be expected using feature words for SNS fatigue. Finally, we verified the effectiveness of feature word extraction for SNS fatigue and the classification accuracy of the causes of SNS fatigue.","PeriodicalId":179456,"journal":{"name":"2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE50665.2020.9292029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

SNS fatigue has become a problem in SNS, i.e., Twitter and Facebook. In this work, we define it as “physical and mental fatigue caused by using SNS” This is one of the most widely used stress experiences on Twitter among young people. Therefore, we analyze the causes of SNS fatigue on Twitter to extract SNS fatigue using tweet data, we aim to create an index to determine SNS fatigue to reduce SNS stress in the future. In this paper, we collected questionnaires about how much stress was felt by 10 Twitter users on 25 events that could cause stress in Twitter usage. Then, we classified the causes of SNS fatigue into three main labels by a principal component analysis. For extracting SNS fatigue, we collect tweets and label those collected tweets to extract feature words of the tweets for each label. Also, we create a classifier for the causes of SNS fatigue using a machine learning algorithm. In this way, SNS fatigue prediction and SNS stress reduction can be expected using feature words for SNS fatigue. Finally, we verified the effectiveness of feature word extraction for SNS fatigue and the classification accuracy of the causes of SNS fatigue.
基于Twitter数据分析的SNS疲劳提取
SNS疲劳已经成为社交网站(即Twitter和Facebook)的一个问题。在这项工作中,我们将其定义为“使用SNS引起的身心疲劳”,这是年轻人在Twitter上使用最广泛的压力体验之一。因此,我们分析Twitter上SNS疲劳的原因,利用推文数据提取SNS疲劳,旨在创建一个指标来确定SNS疲劳,从而在未来减少SNS压力。在本文中,我们收集了关于10名Twitter用户在25个可能导致Twitter使用压力的事件中感受到多少压力的问卷。然后,我们通过主成分分析将SNS疲劳的原因划分为三个主要标签。对于SNS疲劳提取,我们收集推文并对收集到的推文进行标记,为每个标签提取推文的特征词。此外,我们使用机器学习算法为SNS疲劳的原因创建了一个分类器。这样,就可以利用SNS疲劳特征词来预测SNS疲劳和减少SNS应力。最后,验证了SNS疲劳特征词提取的有效性和SNS疲劳原因分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信