Performance Evaluations of Different Parallel Programming Paradigms for Pennes Bioheat Equations and Navier-Stokes Equations

C. Chou, Kuen-Tsann Chen
{"title":"Performance Evaluations of Different Parallel Programming Paradigms for Pennes Bioheat Equations and Navier-Stokes Equations","authors":"C. Chou, Kuen-Tsann Chen","doi":"10.1109/ICS.2016.0106","DOIUrl":null,"url":null,"abstract":"The chip heat dissipations defeat the clock speed increment. Multi-core clusters and the heterogeneous platforms including accelerators become a main trend recently. Parallel programming paradigms surfs on these diverse platforms: CUDA C, CUDA Fortran, OpenCL, OpenACC, OpenMP, MPI, pthread, MapReduce, and so on. The quantitative performance indexes help get a good picture of parallel programming paradigms for the applications. This study employ two examples: Pennes bioheat equations to simulating local hyperthermia destroying tumor cells and Navier-Stokes equations to simulating driven cavity flow at high Reynolds numbers via parallel programming paradigms: CUDA C, CUDA Fortran, OpenMP and MPI. Parallel programming in MPI for Pennes bioheat equations shows super-linear speedup on NCHC (National Center for High-performance Computing) ALPS and significantly faster than the original author, whereas Parallel programming in CUDA C framework for Navier-Stokes equations achieves around 24 times speedup on a NVIDIA C1060 GPU. We hope these results to support useful suggestions.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The chip heat dissipations defeat the clock speed increment. Multi-core clusters and the heterogeneous platforms including accelerators become a main trend recently. Parallel programming paradigms surfs on these diverse platforms: CUDA C, CUDA Fortran, OpenCL, OpenACC, OpenMP, MPI, pthread, MapReduce, and so on. The quantitative performance indexes help get a good picture of parallel programming paradigms for the applications. This study employ two examples: Pennes bioheat equations to simulating local hyperthermia destroying tumor cells and Navier-Stokes equations to simulating driven cavity flow at high Reynolds numbers via parallel programming paradigms: CUDA C, CUDA Fortran, OpenMP and MPI. Parallel programming in MPI for Pennes bioheat equations shows super-linear speedup on NCHC (National Center for High-performance Computing) ALPS and significantly faster than the original author, whereas Parallel programming in CUDA C framework for Navier-Stokes equations achieves around 24 times speedup on a NVIDIA C1060 GPU. We hope these results to support useful suggestions.
Pennes生物热方程和Navier-Stokes方程不同并行规划范式的性能评价
芯片散热击败时钟速度增量。多核集群和包括加速器在内的异构平台是近年来的主要趋势。并行编程范例在这些不同的平台上冲浪:CUDA C、CUDA Fortran、OpenCL、OpenACC、OpenMP、MPI、pthread、MapReduce等等。定量的性能指标有助于更好地了解应用程序的并行编程范式。本研究采用了两个例子:Pennes生物热方程模拟局部高温破坏肿瘤细胞,Navier-Stokes方程通过并行编程范式:CUDA C、CUDA Fortran、OpenMP和MPI模拟高雷诺数下驱动腔流。在MPI中对Pennes生物热方程进行并行编程,在NCHC(国家高性能计算中心)ALPS上显示出超线性加速,明显快于原作者,而在CUDA C框架下对Navier-Stokes方程进行并行编程,在NVIDIA C1060 GPU上实现了约24倍的加速。我们希望这些结果能够支持有用的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信