Hyperspectral image fusion using 2-D principal component analysis

C. Theoharatos, V. Tsagaris, N. Fragoulis, G. Economou
{"title":"Hyperspectral image fusion using 2-D principal component analysis","authors":"C. Theoharatos, V. Tsagaris, N. Fragoulis, G. Economou","doi":"10.1109/ICSPT.2011.6064682","DOIUrl":null,"url":null,"abstract":"In this work, a novel fusion scheme for efficient representation of a hyperspectral dataset in an informative color image is proposed using 2D-PCA. The fusion approach is based on partitioning the hyperspectral dataset into subgroups of bands, and image covariance matrix is directly applied on the 2D matrices of each spectral band. The resulting image representation offers the ability to effectively discriminate information, providing advanced performance in terms of multiband representation. Experimental results, provided on two hyperspectral dataset acquired by CHRIS sensor and the AVIRIS instrument, demonstrate the advantage of the proposed work.","PeriodicalId":376786,"journal":{"name":"2011 2nd International Conference on Space Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Space Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPT.2011.6064682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, a novel fusion scheme for efficient representation of a hyperspectral dataset in an informative color image is proposed using 2D-PCA. The fusion approach is based on partitioning the hyperspectral dataset into subgroups of bands, and image covariance matrix is directly applied on the 2D matrices of each spectral band. The resulting image representation offers the ability to effectively discriminate information, providing advanced performance in terms of multiband representation. Experimental results, provided on two hyperspectral dataset acquired by CHRIS sensor and the AVIRIS instrument, demonstrate the advantage of the proposed work.
基于二维主成分分析的高光谱图像融合
在这项工作中,提出了一种新的融合方案,用于在信息丰富的彩色图像中高效地表示高光谱数据集。该融合方法基于将高光谱数据集划分为波段子组,并将图像协方差矩阵直接应用于每个光谱波段的二维矩阵。由此产生的图像表示提供了有效区分信息的能力,在多波段表示方面提供了先进的性能。在CHRIS传感器和AVIRIS仪器采集的两个高光谱数据集上的实验结果验证了所提出方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信