Linearly Combining Sensor Measurements Optimally to Enforce an SPR Transfer Matrix

R. Caverly, J. Forbes
{"title":"Linearly Combining Sensor Measurements Optimally to Enforce an SPR Transfer Matrix","authors":"R. Caverly, J. Forbes","doi":"10.1109/CCTA.2018.8511633","DOIUrl":null,"url":null,"abstract":"This paper presents methods to combine measurements of a linear time-invariant system in such a manner that the new system obtained is strictly positive real (SPR). In particular, this paper focuses on how to best combine measurements in a linear fashion by minimizing the difference in an $\\mathcal{H}_{2}$ or $\\mathcal{H}_{\\infty}$ sense between the new system and a given desired system. The methods proposed to linearly combine sensor measurements rely on linear matrix inequalities (LMIs), which lead to tractable synthesis procedures. Numerical examples involving noncolocated elastic mechanical systems are provided that illustrate the effectiveness of the proposed techniques when used for output tracking control.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents methods to combine measurements of a linear time-invariant system in such a manner that the new system obtained is strictly positive real (SPR). In particular, this paper focuses on how to best combine measurements in a linear fashion by minimizing the difference in an $\mathcal{H}_{2}$ or $\mathcal{H}_{\infty}$ sense between the new system and a given desired system. The methods proposed to linearly combine sensor measurements rely on linear matrix inequalities (LMIs), which lead to tractable synthesis procedures. Numerical examples involving noncolocated elastic mechanical systems are provided that illustrate the effectiveness of the proposed techniques when used for output tracking control.
线性组合传感器测量的最佳执行SPR传输矩阵
本文提出了将线性定常系统的测量值组合起来,使新系统是严格正实数(SPR)的方法。特别是,本文着重于如何通过最小化新系统与给定期望系统之间$\mathcal{H}_{2}$或$\mathcal{H}_{\infty}$意义上的差异,以线性方式最好地组合测量。所提出的线性组合传感器测量的方法依赖于线性矩阵不等式(lmi),这使得合成过程易于处理。给出了非配位弹性机械系统的数值算例,说明了所提方法用于输出跟踪控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信