SEFD: A Simple and Effective Single Stage Face Detector

Lei Shi, Xiang Xu, I. Kakadiaris
{"title":"SEFD: A Simple and Effective Single Stage Face Detector","authors":"Lei Shi, Xiang Xu, I. Kakadiaris","doi":"10.1109/ICB45273.2019.8987231","DOIUrl":null,"url":null,"abstract":"Recently, the state-of-the-art face detectors are extending a backbone network by adding more feature fusion and context extractor layers to localize multi-scale faces. Therefore, they are struggling to balance the computational efficiency and performance of face detectors. In this paper, we introduce a simple and effective face detector (SEFD). SEFD leverages a computationally light-weight Feature Aggregation Module (FAM) to achieve high computational efficiency of feature fusion and context enhancement. In addition, the aggregation loss is introduced to mitigate the imbalance of the power of feature representation for the classification and regression tasks due to the backbone network initialized by the pre-trained model that focuses on the classification task other than both the regression and classification tasks. SEFD achieves state-of-the-art performance on the UFDD dataset and mAPs of 95.3%, 94.1%, 88.3% and 94.9%, 94.0%, 88.2% on the easy, medium and hard subsets of WIDER Face validation and testing datasets, respectively.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, the state-of-the-art face detectors are extending a backbone network by adding more feature fusion and context extractor layers to localize multi-scale faces. Therefore, they are struggling to balance the computational efficiency and performance of face detectors. In this paper, we introduce a simple and effective face detector (SEFD). SEFD leverages a computationally light-weight Feature Aggregation Module (FAM) to achieve high computational efficiency of feature fusion and context enhancement. In addition, the aggregation loss is introduced to mitigate the imbalance of the power of feature representation for the classification and regression tasks due to the backbone network initialized by the pre-trained model that focuses on the classification task other than both the regression and classification tasks. SEFD achieves state-of-the-art performance on the UFDD dataset and mAPs of 95.3%, 94.1%, 88.3% and 94.9%, 94.0%, 88.2% on the easy, medium and hard subsets of WIDER Face validation and testing datasets, respectively.
SEFD:一个简单有效的单级人脸检测器
最近,最先进的人脸检测器正在通过添加更多的特征融合和上下文提取层来扩展骨干网络,以定位多尺度的人脸。因此,他们正在努力平衡人脸检测器的计算效率和性能。本文介绍了一种简单有效的人脸检测器。SEFD利用计算量轻的特征聚合模块(FAM)来实现特征融合和上下文增强的高计算效率。此外,为了缓解由于预训练模型初始化的骨干网络只关注分类任务而不是回归和分类任务而导致的分类和回归任务特征表示能力的不平衡,引入了聚合损失。SEFD在UFDD数据集和mAPs上达到了最先进的性能,分别为95.3%、94.1%、88.3%和94.9%、94.0%、88.2%,分别用于wide Face验证和测试数据集的简单、中等和硬子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信