{"title":"Pulse latch based FSRs for low-overhead hardware implementation of cryptographic algorithms","authors":"S. Mansouri, E. Dubrova","doi":"10.1109/ICCD.2010.5647756","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of low-overhead implementation of Feedback Shift Registers (FSRs). We present a dynamic pulse latch which is based on transistors with two different channel lengths. The channel lengths are selected to make the latch suitable for replacing flip-flops in FSRs. The presented latch is 1.92 times smaller and 3.94 times less power consuming compared to the smallest standard flip-flop in the same technology. By re-implementing FSRs of Grain-80 stream cipher with the presented latch, we achieve 32.24% reduction in area, 36.77% reduction in total power, and 10.81% increase in the maximum clock frequency compared to the original, flip-flop based version of Grain-80. If, in addition, the static time borrowing technique is applied, we achieve an additional 25.5% increase in the maximum clock frequency at the expense of 4.68% smaller gain in area and 2.67% smaller gain in total power.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we address the problem of low-overhead implementation of Feedback Shift Registers (FSRs). We present a dynamic pulse latch which is based on transistors with two different channel lengths. The channel lengths are selected to make the latch suitable for replacing flip-flops in FSRs. The presented latch is 1.92 times smaller and 3.94 times less power consuming compared to the smallest standard flip-flop in the same technology. By re-implementing FSRs of Grain-80 stream cipher with the presented latch, we achieve 32.24% reduction in area, 36.77% reduction in total power, and 10.81% increase in the maximum clock frequency compared to the original, flip-flop based version of Grain-80. If, in addition, the static time borrowing technique is applied, we achieve an additional 25.5% increase in the maximum clock frequency at the expense of 4.68% smaller gain in area and 2.67% smaller gain in total power.