A Comparative Study of the CNN Model for AD Diagnosis

Ramineni Vyshnavi, Goo-Rak Kwon
{"title":"A Comparative Study of the CNN Model for AD Diagnosis","authors":"Ramineni Vyshnavi, Goo-Rak Kwon","doi":"10.30693/smj.2023.12.7.52","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease is one type of dementia, the symptoms can be treated by detecting the disease at its early stages. Recently, many computer-aided diagnosis using magnetic resonance image(MRI) have shown a good results in the classification of AD. Taken these MRI images and feed to Free surfer software to extra the features. In consideration, using T1-weighted images and classifying using the convolution neural network (CNN) model are proposed. In this paper, taking the subjects from ADNI of subcortical and cortical features of 190 subjects. Consider the study to reduce the complexity of the model by using the single layer in the Res-Net, VGG, and Alex Net. Multi-class classification is used to classify four different stages, CN, EMCI, LMCI, AD. The following experiment shows for respective classification Res-Net, VGG, and Alex Net with the best accuracy with VGG at 96%, Res-Net, GoogLeNet and Alex Net at 91%, 93% and 89% respectively.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.7.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease is one type of dementia, the symptoms can be treated by detecting the disease at its early stages. Recently, many computer-aided diagnosis using magnetic resonance image(MRI) have shown a good results in the classification of AD. Taken these MRI images and feed to Free surfer software to extra the features. In consideration, using T1-weighted images and classifying using the convolution neural network (CNN) model are proposed. In this paper, taking the subjects from ADNI of subcortical and cortical features of 190 subjects. Consider the study to reduce the complexity of the model by using the single layer in the Res-Net, VGG, and Alex Net. Multi-class classification is used to classify four different stages, CN, EMCI, LMCI, AD. The following experiment shows for respective classification Res-Net, VGG, and Alex Net with the best accuracy with VGG at 96%, Res-Net, GoogLeNet and Alex Net at 91%, 93% and 89% respectively.
CNN模型在AD诊断中的比较研究
阿尔茨海默病是痴呆症的一种,可以通过在早期发现疾病来治疗症状。近年来,许多计算机辅助诊断利用磁共振成像(MRI)对AD的分类显示出良好的效果。拍摄这些核磁共振成像图像,并提供给免费冲浪者软件,以增加功能。考虑到这一点,提出了使用t1加权图像和使用卷积神经网络(CNN)模型进行分类。本文选取了190名受试者的皮层下和皮层特征的ADNI。考虑通过在Res-Net、VGG和Alex Net中使用单层来降低模型复杂性的研究。采用多级分类法对CN、EMCI、LMCI、AD四个不同的阶段进行分类。下面的实验表明,对于各自的分类,Res-Net、VGG和Alex Net的准确率最高,其中VGG的准确率为96%,Res-Net、GoogLeNet和Alex Net的准确率分别为91%、93%和89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信