Stochastic optimal control problems of discrete‐time Markov jump systems

Teng Song
{"title":"Stochastic optimal control problems of discrete‐time Markov jump systems","authors":"Teng Song","doi":"10.1002/oca.2991","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the indefinite stochastic optimal control problems of discrete‐time Markov jump linear systems. Firstly, we establish the new stochastic maximum principle, and by solving the forward‐backward stochastic difference equations with Markov jump (FBSDEs‐MJ), we derive the necessary and sufficient solvability condition of the indefinite control problem with non‐discounted cost, which is in an explicit analytical expression. Then, the optimal control is designed by a series of coupled generalized Riccati difference equations with Markov jump (GRDEs‐MJ) and linear recursive equations with Markov jump (LREs‐MJ). Moreover, based on the non‐discounted cost case, we deduce the optimal control problem with discounted cost. Finally, a numerical example for defined‐benefit (DB) pension fund with regime switching is exploited to illustrate the validity of the obtained results.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"492 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.2991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the indefinite stochastic optimal control problems of discrete‐time Markov jump linear systems. Firstly, we establish the new stochastic maximum principle, and by solving the forward‐backward stochastic difference equations with Markov jump (FBSDEs‐MJ), we derive the necessary and sufficient solvability condition of the indefinite control problem with non‐discounted cost, which is in an explicit analytical expression. Then, the optimal control is designed by a series of coupled generalized Riccati difference equations with Markov jump (GRDEs‐MJ) and linear recursive equations with Markov jump (LREs‐MJ). Moreover, based on the non‐discounted cost case, we deduce the optimal control problem with discounted cost. Finally, a numerical example for defined‐benefit (DB) pension fund with regime switching is exploited to illustrate the validity of the obtained results.
离散时间马尔可夫跳变系统的随机最优控制问题
本文研究离散时间马尔可夫跳变线性系统的不定随机最优控制问题。首先,建立了新的随机极大值原理,并通过求解具有马尔可夫跳变的正反向随机差分方程(FBSDEs - MJ),得到了具有非贴现代价的不确定控制问题的充分必要可解条件,并以显式解析形式给出了该问题的解。然后,利用具有马尔可夫跳变的广义Riccati差分方程(GRDEs‐MJ)和具有马尔可夫跳变的线性递推方程(LREs‐MJ)进行了最优控制设计。此外,在非折现成本情况下,我们推导出具有折现成本的最优控制问题。最后,利用一个具有制度转换的固定收益(DB)养老基金的数值例子来说明所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信