Nonparametric Statistics
D. Mood, James R. Morrow, Matthew B. McQueen
{"title":"Nonparametric Statistics","authors":"D. Mood, James R. Morrow, Matthew B. McQueen","doi":"10.4324/9781351211062-15","DOIUrl":null,"url":null,"abstract":"In light of Cohen (Ann Math Stat 37:458–463, 1966) and Rao (Ann Stat 4:1023–1037, 1976), who provide necessary and sufficient conditions for admissibility of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how can an inadmissible smoother transformed into an admissible one? Specifically, this contribution investigates the spectrum of various matrix symmetrization schemes for k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many traditional symmetrization schemes fails to lie in the unit interval. The contribution of this study is to present a symmetrization scheme for smoothing matrices that make the associated estimator admissible. For k-nearest neighbor smoothers, the result of the transformation has a natural interpretation in terms of graph theory. P.-A. Cornillon University of Rennes, IRMAR UMR 6625, Rennes, France e-mail: pac@univ-rennes2.fr A. Gribinski Department of Mathematics, Princeton University, Princeton, NJ, USA e-mail: aurelien.gribinski@princeton.edu N. Hengartner Los Alamos National Laboratory, Los Alamos, NM, USA e-mail: nickh@lanl.gov T. Kerdreux UMR 8548, Ecole Normale Supérieure, Paris, France e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber ( ) CREST, UMR 9194, Cepe-Ensae, Palaiseau, France e-mail: eml@ensae.fr © Springer Nature Switzerland AG 2018 P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P.-A. Cornillon et al.","PeriodicalId":424691,"journal":{"name":"Introduction to Statistics in Human Performance","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introduction to Statistics in Human Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781351211062-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In light of Cohen (Ann Math Stat 37:458–463, 1966) and Rao (Ann Stat 4:1023–1037, 1976), who provide necessary and sufficient conditions for admissibility of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how can an inadmissible smoother transformed into an admissible one? Specifically, this contribution investigates the spectrum of various matrix symmetrization schemes for k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many traditional symmetrization schemes fails to lie in the unit interval. The contribution of this study is to present a symmetrization scheme for smoothing matrices that make the associated estimator admissible. For k-nearest neighbor smoothers, the result of the transformation has a natural interpretation in terms of graph theory. P.-A. Cornillon University of Rennes, IRMAR UMR 6625, Rennes, France e-mail: pac@univ-rennes2.fr A. Gribinski Department of Mathematics, Princeton University, Princeton, NJ, USA e-mail: aurelien.gribinski@princeton.edu N. Hengartner Los Alamos National Laboratory, Los Alamos, NM, USA e-mail: nickh@lanl.gov T. Kerdreux UMR 8548, Ecole Normale Supérieure, Paris, France e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber ( ) CREST, UMR 9194, Cepe-Ensae, Palaiseau, France e-mail: eml@ensae.fr © Springer Nature Switzerland AG 2018 P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P.-A. Cornillon et al.
非参数统计
根据Cohen (Ann Math Stat 37:458-463, 1966)和Rao (Ann Stat 4:1023-1037, 1976)提供的线性平滑可容许性的充分必要条件,人们认识到许多众所周知的线性非参数回归平滑是不可容许的,因为平滑矩阵是不对称的,或者平滑矩阵的谱在单位区间之外[0,1]。本章要回答的问题是,不可采信的平滑如何转化为可采信的平滑?具体来说,本文研究了k近邻型平滑器的各种矩阵对称方案的谱。这不是一项容易的任务,因为许多传统的对称方案的频谱不能在单位区间内。本研究的贡献在于提出一种平滑矩阵的对称方案,使相关估计量可接受。对于k近邻平滑点,变换的结果在图论中有一个自然的解释。中国。科尼永雷恩大学,IRMAR UMR 6625,雷恩,法国e-mail: pac@univ-rennes2.fr美国普林斯顿普林斯顿大学数学系A. Gribinski e-mail: aurelien.gribinski@princeton.edu美国新泽西州洛斯阿拉莫斯洛斯阿拉莫斯国家实验室N. Hengartner e-mail: nickh@lanl.gov法国巴黎高等师范学院UMR 8548, T. Kerdreux e-mail: thomas.kerdreux@inria.fr E. Matzner-Løber () CREST, UMR 9194,法国帕莱索Cepe-Ensae e-mail:eml@ensae.fr©Springer Nature Switzerland AG 2018 P. Bertail et al.(编辑),非参数统计,Springer Proceedings in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_1 1 2 P. a。Cornillon等人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。