Congestion Control for Infrastructure-Based CRNs: A Multiple Model Predictive Control Approach

Kefan Xiao, S. Mao, Jitendra Tugnait
{"title":"Congestion Control for Infrastructure-Based CRNs: A Multiple Model Predictive Control Approach","authors":"Kefan Xiao, S. Mao, Jitendra Tugnait","doi":"10.1109/GLOCOM.2016.7841679","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of robust congestion control in infrastructure-based cognitive radio networks (CRN). We develop an active queue management (AQM) algorithm, termed MAQ, based on multiple model predictive control (MMPC). The goal is to stabilize the TCP queue at the base station (BS) under disturbances from the varying service capacity for secondary users (SU). The proposed MAQ scheme is validated with extensive simulation studies under various types of background traffic and system/network parameters. It outperforms two benchmark schemes with considerable gains in all the scenarios considered.","PeriodicalId":425019,"journal":{"name":"2016 IEEE Global Communications Conference (GLOBECOM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2016.7841679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we investigate the problem of robust congestion control in infrastructure-based cognitive radio networks (CRN). We develop an active queue management (AQM) algorithm, termed MAQ, based on multiple model predictive control (MMPC). The goal is to stabilize the TCP queue at the base station (BS) under disturbances from the varying service capacity for secondary users (SU). The proposed MAQ scheme is validated with extensive simulation studies under various types of background traffic and system/network parameters. It outperforms two benchmark schemes with considerable gains in all the scenarios considered.
基于基础设施的crn拥塞控制:一种多模型预测控制方法
本文研究了基于基础设施的认知无线网络(CRN)中的鲁棒拥塞控制问题。本文提出了一种基于多模型预测控制(MMPC)的主动队列管理(AQM)算法MAQ。目标是稳定基站(BS)上的TCP队列,使其不受次要用户(SU)服务容量变化的干扰。在不同类型的后台流量和系统/网络参数下,对所提出的MAQ方案进行了广泛的仿真研究。在所有考虑的场景中,它的性能都优于两个基准方案,并获得了可观的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信