Feedback-driven clustering for automated linking of web pages

Adam Oest, M. Rege
{"title":"Feedback-driven clustering for automated linking of web pages","authors":"Adam Oest, M. Rege","doi":"10.1109/ICITST.2013.6750219","DOIUrl":null,"url":null,"abstract":"In this paper we propose and test a system that indexes a large collection of HTML documents (i.e. an entire web site) and automatically generates context-relevant inline text links between pairs of related documents (i.e. web pages). The goal of the system is threefold: to increase user interaction with the site being browsed, to discover relevant keywords for each document, and to effectively cluster the documents into semantically-significant groupings. The quality of the links is improved over time through passive user feedback collection. Our system can be deployed as a web service and has been tested on offline datasets as well as a live web site. A distinctive feature of our system is that it supports datasets that grow or change over time.","PeriodicalId":246884,"journal":{"name":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2013.6750219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose and test a system that indexes a large collection of HTML documents (i.e. an entire web site) and automatically generates context-relevant inline text links between pairs of related documents (i.e. web pages). The goal of the system is threefold: to increase user interaction with the site being browsed, to discover relevant keywords for each document, and to effectively cluster the documents into semantically-significant groupings. The quality of the links is improved over time through passive user feedback collection. Our system can be deployed as a web service and has been tested on offline datasets as well as a live web site. A distinctive feature of our system is that it supports datasets that grow or change over time.
用于自动链接网页的反馈驱动聚类
在本文中,我们提出并测试了一个系统,该系统对大量HTML文档(即整个网站)进行索引,并在相关文档对(即网页)之间自动生成与上下文相关的内联文本链接。该系统的目标有三个:增加用户与正在浏览的网站的交互,为每个文档发现相关的关键字,并有效地将文档聚类到语义上重要的分组中。通过被动的用户反馈收集,链接的质量会随着时间的推移而提高。我们的系统可以作为web服务部署,并且已经在离线数据集和实时网站上进行了测试。我们系统的一个显著特征是它支持随时间增长或变化的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信