Audio/video supervised independent vector analysis through multimodal pilot dependent components

F. Nesta, Saeed Mosayyebpour, Zbyněk Koldovský, K. Paleček
{"title":"Audio/video supervised independent vector analysis through multimodal pilot dependent components","authors":"F. Nesta, Saeed Mosayyebpour, Zbyněk Koldovský, K. Paleček","doi":"10.23919/EUSIPCO.2017.8081388","DOIUrl":null,"url":null,"abstract":"Independent Vector Analysis is a powerful tool for estimating the broadband acoustic transfer function between multiple sources and the microphones in the frequency domain. In this work, we consider an extended IVA model which adopts the concept of pilot dependent signals. Without imposing any constraint on the de-mixing system, pilot signals depending on the target source are injected into the model enforcing the permutation of outputs to be consistent over time. A neural network trained on acoustic data and a lip motion detection are jointly used to produce a multimodal pilot signal dependent on the target source. It is shown through experimental results that this structure allows the enhancement of a predefined target source in very difficult and ambiguous scenarios.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Independent Vector Analysis is a powerful tool for estimating the broadband acoustic transfer function between multiple sources and the microphones in the frequency domain. In this work, we consider an extended IVA model which adopts the concept of pilot dependent signals. Without imposing any constraint on the de-mixing system, pilot signals depending on the target source are injected into the model enforcing the permutation of outputs to be consistent over time. A neural network trained on acoustic data and a lip motion detection are jointly used to produce a multimodal pilot signal dependent on the target source. It is shown through experimental results that this structure allows the enhancement of a predefined target source in very difficult and ambiguous scenarios.
音频/视频监督独立矢量分析通过多模态导频相关组件
独立矢量分析是在频域估计多声源与传声器间宽带声传递函数的有力工具。在这项工作中,我们考虑了一个扩展的IVA模型,该模型采用导频相关信号的概念。在不对解混系统施加任何约束的情况下,根据目标源的导频信号被注入模型,从而使输出的排列随时间保持一致。基于声学数据训练的神经网络和唇动检测共同用于产生依赖于目标源的多模态导频信号。实验结果表明,这种结构可以在非常困难和模糊的情况下增强预定义的目标源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信