Symbol of the Dirichlet-to-Neumann operator in 2D diffraction problems with large wavenumber

M. Kondratieva, S. Sadov
{"title":"Symbol of the Dirichlet-to-Neumann operator in 2D diffraction problems with large wavenumber","authors":"M. Kondratieva, S. Sadov","doi":"10.1109/DD.2003.238180","DOIUrl":null,"url":null,"abstract":"Consider the Dirichlet-to-Neumann operator N in the exterior problem for the 2D Helmholtz equation outside a bounded domain with smooth boundary. Using parametrization of the boundary by normalized arclength, we treat N as a pseudodifferential operator on the unit circle. We study its discrete symbol. We put, forward a conjecture on the universal behaviour, independent of shape and curvature of the boundary, of the symbol as the wavenumber k /spl rarr/ /spl infin/. The conjecture is motivated by an explicit formula for circular boundary, and confirmed numerically for other shapes. It also agrees, on a physical level of rigor, with Kirchhoff's approximation. The conjecture, if true, opens new ways in numerical analysis of diffraction in the range of moderately high frequencies.","PeriodicalId":332604,"journal":{"name":"International Seminar Day on Diffraction, 2003. Proceedings.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar Day on Diffraction, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2003.238180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Consider the Dirichlet-to-Neumann operator N in the exterior problem for the 2D Helmholtz equation outside a bounded domain with smooth boundary. Using parametrization of the boundary by normalized arclength, we treat N as a pseudodifferential operator on the unit circle. We study its discrete symbol. We put, forward a conjecture on the universal behaviour, independent of shape and curvature of the boundary, of the symbol as the wavenumber k /spl rarr/ /spl infin/. The conjecture is motivated by an explicit formula for circular boundary, and confirmed numerically for other shapes. It also agrees, on a physical level of rigor, with Kirchhoff's approximation. The conjecture, if true, opens new ways in numerical analysis of diffraction in the range of moderately high frequencies.
二维大波数衍射问题中的Dirichlet-to-Neumann算子符号
考虑光滑边界有界域外二维Helmholtz方程的外部问题中的Dirichlet-to-Neumann算子N。利用归一化弧长对边界进行参数化,将N作为单位圆上的伪微分算子。我们研究了它的离散符号。我们提出了一个关于波数为k /spl / /spl / /spl infin/的符号的不受边界形状和曲率影响的普遍行为的猜想。该猜想由圆形边界的显式公式推导而来,并在其他形状的边界上得到数值证实。在严格的物理层面上,它也符合基尔霍夫的近似。这个猜想如果成立,将为中高频范围内衍射的数值分析开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信