Ensemble Kalman Filter based Dynamic State Estimation of PMSG-based Wind Turbine

Shahabodin Afrasiabi, M. Afrasiabi, Mohammad Rastegar, M. Mohammadi, Benyamin Parang, F. Ferdowsi
{"title":"Ensemble Kalman Filter based Dynamic State Estimation of PMSG-based Wind Turbine","authors":"Shahabodin Afrasiabi, M. Afrasiabi, Mohammad Rastegar, M. Mohammadi, Benyamin Parang, F. Ferdowsi","doi":"10.1109/TPEC.2019.8662174","DOIUrl":null,"url":null,"abstract":"Permanent magnet synchronous generators (PMSGs) are commonly used in wind power generation because of less maintenance cost and flexible speed control. Dynamic state estimation is beneficial in wide area monitoring and control (WAMAC). Because, it enables the access to non-measurable variables. This paper proposes a nonlinear dynamic state estimation based on ensemble Kalman filter (EnKF) for PMSG-based wind turbines. The results of the proposed method are evaluated by comparing with extended Kalman filter (EKF) and unscented Kalman filter (UKF).","PeriodicalId":424038,"journal":{"name":"2019 IEEE Texas Power and Energy Conference (TPEC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC.2019.8662174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Permanent magnet synchronous generators (PMSGs) are commonly used in wind power generation because of less maintenance cost and flexible speed control. Dynamic state estimation is beneficial in wide area monitoring and control (WAMAC). Because, it enables the access to non-measurable variables. This paper proposes a nonlinear dynamic state estimation based on ensemble Kalman filter (EnKF) for PMSG-based wind turbines. The results of the proposed method are evaluated by comparing with extended Kalman filter (EKF) and unscented Kalman filter (UKF).
基于集成卡尔曼滤波的pmsg风力发电机组动态估计
永磁同步发电机具有维护成本低、调速灵活等优点,在风力发电中得到广泛应用。动态状态估计有利于广域监测与控制(WAMAC)。因为,它允许访问不可测量的变量。提出了一种基于集成卡尔曼滤波(EnKF)的pmsg风力发电机组非线性动态状态估计方法。通过与扩展卡尔曼滤波(EKF)和无气味卡尔曼滤波(UKF)进行比较,对所提方法的效果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信