Influence of Trace H2O and O2 on SF6 Decomposition under Corona Discharge and Spark Discharge based on Oxygen Isotope Tracer

Zhenrui Zhou, Dong Han, Mingyue Zhao, Guoqiang Zhang
{"title":"Influence of Trace H2O and O2 on SF6 Decomposition under Corona Discharge and Spark Discharge based on Oxygen Isotope Tracer","authors":"Zhenrui Zhou, Dong Han, Mingyue Zhao, Guoqiang Zhang","doi":"10.1109/eic47619.2020.9158724","DOIUrl":null,"url":null,"abstract":"Lower fluorides of sulfur are primary byproducts of SF<inf>6</inf> when insulation failures occur, which decompose into final long-lived by-products in the presence of oxygen or moisture, such as SO<inf>2</inf>F<inf>2</inf>, SO<inf>2</inf>, SOF<inf>2</inf> and SOF<inf>4</inf>. The decomposition mechanism of SF<inf>6</inf> is complicated, and the decomposition products are different under different insulation failures. Therefore, summarizing a variation of SF<inf>6</inf> decomposition products under different faults and different discharge conditions can provide a reference for fault diagnosis of SF<inf>6</inf> gas-insulated electrical equipment. Based on oxygen isotope tracer technique, different contents of H<inf>2</inf><sup>18</sup>O and <sup>18</sup>O<inf>2</inf> were injected into the text vessel to simulate an environment containing trace moisture or oxygen. Then, a series of corona discharge and spark discharge experiments were carried out. The decomposition gases were detected by gas chromatography-mass spectrometry (GC-MS). The decomposition gases S<sup>16</sup>O<inf>2</inf>F<inf>2</inf>, S<sup>16</sup>O<sup>18</sup>OF<inf>2</inf>, S<sup>18</sup>O<inf>2</inf>F<inf>2</inf>, S<sup>16</sup>O<inf>2</inf> and S<sup>16</sup>O<sup>18</sup>O indicate that moisture and oxygen participate in the decomposition reaction of SF<inf>6</inf>. Furthermore, the influence of trace moisture and oxygen on the contents of three isotopic compounds of SO<inf>2</inf>F<inf>2</inf> were analyzed, and the ratios of SO<inf>2</inf>F<inf>2</inf> to (SO<inf>2</inf>+SOF<inf>2</inf>) were investigated in the trace moisture environment. The results show that both H<inf>2</inf>O and O<inf>2</inf> involve into the formation of SO<inf>2</inf>F<inf>2</inf>. In the trace moisture environment, the peak area ratio of SO<inf>2</inf>F<inf>2</inf>/ (SOF<inf>2</inf>+SO<inf>2</inf>) gradually decreases with the increase of water injection. The change of the ratio of SO<inf>2</inf>F<inf>2</inf> to (SOF<inf>2</inf>+SO<inf>2</inf>) may provide an index for detecting the moisture content of SF<inf>6</inf> gas-insulated electrical equipment.","PeriodicalId":286019,"journal":{"name":"2020 IEEE Electrical Insulation Conference (EIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Insulation Conference (EIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eic47619.2020.9158724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lower fluorides of sulfur are primary byproducts of SF6 when insulation failures occur, which decompose into final long-lived by-products in the presence of oxygen or moisture, such as SO2F2, SO2, SOF2 and SOF4. The decomposition mechanism of SF6 is complicated, and the decomposition products are different under different insulation failures. Therefore, summarizing a variation of SF6 decomposition products under different faults and different discharge conditions can provide a reference for fault diagnosis of SF6 gas-insulated electrical equipment. Based on oxygen isotope tracer technique, different contents of H218O and 18O2 were injected into the text vessel to simulate an environment containing trace moisture or oxygen. Then, a series of corona discharge and spark discharge experiments were carried out. The decomposition gases were detected by gas chromatography-mass spectrometry (GC-MS). The decomposition gases S16O2F2, S16O18OF2, S18O2F2, S16O2 and S16O18O indicate that moisture and oxygen participate in the decomposition reaction of SF6. Furthermore, the influence of trace moisture and oxygen on the contents of three isotopic compounds of SO2F2 were analyzed, and the ratios of SO2F2 to (SO2+SOF2) were investigated in the trace moisture environment. The results show that both H2O and O2 involve into the formation of SO2F2. In the trace moisture environment, the peak area ratio of SO2F2/ (SOF2+SO2) gradually decreases with the increase of water injection. The change of the ratio of SO2F2 to (SOF2+SO2) may provide an index for detecting the moisture content of SF6 gas-insulated electrical equipment.
基于氧同位素示踪剂的微量H2O和O2对电晕放电和火花放电下SF6分解的影响
当绝缘失效时,硫的低氟化物是SF6的主要副产物,它们在氧气或水分存在下分解成最终的长寿命副产物,如SO2F2、SO2、SOF2和SOF4。SF6的分解机理复杂,不同绝缘失效下的分解产物也不同。因此,总结不同故障和不同放电条件下SF6分解产物的变化,可以为SF6气体绝缘电气设备的故障诊断提供参考。基于氧同位素示踪技术,在文本容器中注入不同含量的H218O和18O2,模拟含有微量水分或氧气的环境。然后进行了一系列电晕放电和火花放电实验。采用气相色谱-质谱联用法(GC-MS)检测分解气体。分解气体S16O2F2、S16O18OF2、S18O2F2、S16O2和S16O18O表明水分和氧气参与了SF6的分解反应。分析了微量水分和氧气对SO2F2 3种同位素化合物含量的影响,并研究了微量水分环境下SO2F2与(SO2+SOF2)的比值。结果表明,H2O和O2都参与了SO2F2的生成。在微量水分环境下,随着注水量的增加,SO2F2/ (SOF2+SO2)的峰面积比逐渐减小。SO2F2 / (SOF2+SO2)比值的变化可以作为检测SF6气体绝缘电气设备含水率的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信