Detection of Anomalous Crowd Behaviour Using Hyperspherical Clustering

A. S. Rao, J. Gubbi, S. Rajasegarar, S. Marusic, M. Palaniswami
{"title":"Detection of Anomalous Crowd Behaviour Using Hyperspherical Clustering","authors":"A. S. Rao, J. Gubbi, S. Rajasegarar, S. Marusic, M. Palaniswami","doi":"10.1109/DICTA.2014.7008100","DOIUrl":null,"url":null,"abstract":"Analysis of crowd behaviour in public places is an indispensable tool for video surveillance. Automated detection of anomalous crowd behaviour is a critical problem with the increase in human population. Anomalous events may include a person loitering about a place for unusual amounts of time; people running and causing panic; the size of a group of people growing over time etc. In this work, to detect anomalous events and objects, two types of feature coding has been proposed: spatial features and spatio-temporal features. Spatial features comprises of contrast, correlation, energy and homogeneity, which are derived from Gray Level Co-occurrence Matrix (GLCM). Spatio-temporal feature includes the time spent by an object at different locations in the scene. Hyperspherical clustering has been employed to detect the anomalies. Spatial features revealed the anomalous frames by using contrast and homogeneity measures. Loitering behaviour of the people were detected as anomalous objects using the spatio-temporal coding.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Analysis of crowd behaviour in public places is an indispensable tool for video surveillance. Automated detection of anomalous crowd behaviour is a critical problem with the increase in human population. Anomalous events may include a person loitering about a place for unusual amounts of time; people running and causing panic; the size of a group of people growing over time etc. In this work, to detect anomalous events and objects, two types of feature coding has been proposed: spatial features and spatio-temporal features. Spatial features comprises of contrast, correlation, energy and homogeneity, which are derived from Gray Level Co-occurrence Matrix (GLCM). Spatio-temporal feature includes the time spent by an object at different locations in the scene. Hyperspherical clustering has been employed to detect the anomalies. Spatial features revealed the anomalous frames by using contrast and homogeneity measures. Loitering behaviour of the people were detected as anomalous objects using the spatio-temporal coding.
使用超球面聚类检测异常人群行为
公共场所人群行为分析是视频监控不可或缺的工具。随着人口的增加,异常人群行为的自动检测是一个关键问题。异常事件可能包括一个人在一个地方闲逛不寻常的时间;人们四处奔跑,引起恐慌;一群人的规模随着时间的推移而增长等等。在这项工作中,为了检测异常事件和对象,提出了两种类型的特征编码:空间特征和时空特征。空间特征由灰度共生矩阵(GLCM)导出,包括对比度、相关性、能量和均匀性。时空特征包括物体在场景中不同位置所花费的时间。采用超球面聚类方法检测异常。空间特征通过对比和均匀性度量来揭示异常帧。利用时空编码将人的徘徊行为检测为异常对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信