Short-term load forecasting using a chaotic time series

S. P. Michanos, A. Tsakoumis, P. Fessas, S. Vladov, V. Mladenov
{"title":"Short-term load forecasting using a chaotic time series","authors":"S. P. Michanos, A. Tsakoumis, P. Fessas, S. Vladov, V. Mladenov","doi":"10.1109/SCS.2003.1227083","DOIUrl":null,"url":null,"abstract":"A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

A new approach to short-term load forecasting (STLF) in power systems is described in this paper. The method uses a chaotic time series and artificial neural network. The paper describes chaos time series analysis of daily power system peak loads. Nonlinear mapping of deterministic chaos is identified by multilayer perceptron (MLP). Using embedding dimension and delay time, an attractor in pseudo phase plane and an ANN model trained by this attractor are constructed. The proposed approach is demonstrated by an example.
基于混沌时间序列的短期负荷预测
本文提出了一种电力系统短期负荷预测的新方法。该方法采用混沌时间序列和人工神经网络。本文描述了电力系统峰值负荷的混沌时间序列分析。采用多层感知器(MLP)识别确定性混沌的非线性映射。利用嵌入维数和延迟时间,在伪相平面上构造了一个吸引子,并用该吸引子训练了一个人工神经网络模型。最后通过一个算例对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信