Food Recognition with ResNet-50

Zharfan Zahisham, C. Lee, K. Lim
{"title":"Food Recognition with ResNet-50","authors":"Zharfan Zahisham, C. Lee, K. Lim","doi":"10.1109/IICAIET49801.2020.9257825","DOIUrl":null,"url":null,"abstract":"Object recognition has spurred much attention in recent years. The fact that computers are now able to detect and recognize objects has made Artificial Intelligence field, especially machine learning grow very rapidly. The proposed framework uses Deep Convolutional Neural Network (DCNN) that is based on ResNet 50 architecture. Due to the limited computational resources to train the whole model, the ResNet model is imitated and the pre-trained weights are imported. Thereafter, the last few layers of the model are trained on three datasets that have been acquired online. This process is called fine-tuning a pre-trained model. It is one of the most common approaches in building a DCNN architecture. The dataset that was used to evaluate the performance of the model are ETHZ-FOOD101, UECFOOD100 and UECFOOD256. The parameter setting and results of the proposed method are also presented in this paper.","PeriodicalId":300885,"journal":{"name":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET49801.2020.9257825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Object recognition has spurred much attention in recent years. The fact that computers are now able to detect and recognize objects has made Artificial Intelligence field, especially machine learning grow very rapidly. The proposed framework uses Deep Convolutional Neural Network (DCNN) that is based on ResNet 50 architecture. Due to the limited computational resources to train the whole model, the ResNet model is imitated and the pre-trained weights are imported. Thereafter, the last few layers of the model are trained on three datasets that have been acquired online. This process is called fine-tuning a pre-trained model. It is one of the most common approaches in building a DCNN architecture. The dataset that was used to evaluate the performance of the model are ETHZ-FOOD101, UECFOOD100 and UECFOOD256. The parameter setting and results of the proposed method are also presented in this paper.
基于ResNet-50的食物识别
近年来,物体识别技术引起了人们的广泛关注。计算机现在能够检测和识别物体的事实使得人工智能领域,特别是机器学习发展非常迅速。该框架采用基于ResNet 50架构的深度卷积神经网络(DCNN)。由于训练整个模型的计算资源有限,因此对ResNet模型进行模拟,并导入预训练好的权值。然后,在三个在线获取的数据集上训练模型的最后几层。这个过程被称为对预训练模型进行微调。这是构建DCNN体系结构的最常用方法之一。用于评估模型性能的数据集是ETHZ-FOOD101, UECFOOD100和UECFOOD256。文中还介绍了该方法的参数设置和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信