{"title":"Rapid: Identifying Bug Signatures to Support Debugging Activities","authors":"Hwa-You Hsu, James A. Jones, A. Orso","doi":"10.1109/ASE.2008.68","DOIUrl":null,"url":null,"abstract":"Most existing fault-localization techniques focus on identifying and reporting single statements that may contain a fault. Even in cases where a fault involves a single statement, it is generally hard to understand the fault by looking at that statement in isolation. Faults typically manifest themselves in a specific context, and knowing that context is necessary to diagnose and correct the fault. In this paper, we present a novel fault-localization technique that identifies sequences of statements that lead to a failure. The technique works by analyzing partial execution traces corresponding to failing executions and identifying common segments in these traces, incrementally. Our approach provides developers a context that is likely to result in a more directed approach to fault understanding and a lower overall cost for debugging.","PeriodicalId":184403,"journal":{"name":"2008 23rd IEEE/ACM International Conference on Automated Software Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2008.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73
Abstract
Most existing fault-localization techniques focus on identifying and reporting single statements that may contain a fault. Even in cases where a fault involves a single statement, it is generally hard to understand the fault by looking at that statement in isolation. Faults typically manifest themselves in a specific context, and knowing that context is necessary to diagnose and correct the fault. In this paper, we present a novel fault-localization technique that identifies sequences of statements that lead to a failure. The technique works by analyzing partial execution traces corresponding to failing executions and identifying common segments in these traces, incrementally. Our approach provides developers a context that is likely to result in a more directed approach to fault understanding and a lower overall cost for debugging.